

Biofuels: Linking Support to Performance

Round Table, 7-8 June 2007 Summary of discussions

Estimated greenhouse gas warming potential of biofuels relative to conventional fuels

The measurable greenhouse impact of biofuels varies with

- feedstock;
- farming practices and
- energy used for processing.

Significant support provided to biofuels

- Core part of many national CO₂ policies
- Subsidies in OECD in 2007 ~ \$15 billion
- EU biofuel targets (% share of transport fuels)
 - **-** 2007: 2%
 - **2010: 5.75%**
 - 2020: 10% proposed by Parliament
- US targets
 - 4 billion gallons of ethanol in 2006 (2.78% gasoline mkt.)
 - 7.5 billion gallons of ethanol by 2012
 - 35 billion gallons of biofuels by 2017

US: biofuel subsidies facing rapid growth

EU tax subsidies also increasing rapidly

Biofuels: high-cost option for greenhouse gas reductions

Average subsidy per ton of CO_{2-eq}

EU rapeseed biodiesel **€750 - €990** \$1 000 - \$1 340

Sources: Koplow 2007; Kutas et al., 2007

Unintended consequences

- Food and livestock feed prices
- Soil erosion
- Water abstraction and pollution
- Biodiversity threat from land use change, monoculture and pesticides

Fossil energy savings and GHG emissions

- Wide range of uncertainty in the estimation of life-cycle energy and GHG emission balances;
- Farming practice can shift the balance from positive to negative;
- Oxidation of soil carbon and emissions of N₂O from fertiliser application are big sources of GHG emissions.

Which biofuels to support?

- Not all biofuels equally effective—some are counter-productive
- Brazilian sugar can perform best, but still requires subsidy
 - Sugar requires less processing than starch
 - Cane yields are high
 - Heat for distilling ethanol is produced from cane waste, together with electricity sold to the grid
- Research into some second generation fuels useful
 - Ligno-cellulosic ethanol from some feedstocks performs better than any conventional biofuel

Designing support for biofuels

- Volumetric targets inappropriate
 - Likely to favour worst performing, lowest cost production
- Transport fuel carbon content targets better
- Certification for biofuels production
 - Potential to improve outcomes even if barriers currently exist
 - Methodology for direct CO₂ emissions maturing and most direct environmental costs can be measured
 - Difficult to include indirect effects, such as forest destruction and loss of biodiversity
 - Requires extensive stakeholder consultation
 - Crude system should be better than no certification

... designing support for biofuels (cont.)

- UK, NL, Germany, Switzerland, California, EU developing certification to regulate market
- Range and poor performance of today's biofuels partly the result of absence of regulation or incentives linking support to CO₂ balance
- Fuel carbon taxes, including for biofuels, would be more cost-effective than direct subsidies or targets

Support levels may be unsustainable

- Unrealistic biofuel projections of major share in energy supply
 - Supplying 25% of US energy supply would require 50% of all ecosystem production in US
 - Biofuels currently require subsidies in excess of their contribution to abatement
- Subsidising large scale production/consumption
 - Fails to deliver security or ghg emissions reduction
 - Expensive and inefficient way to support rural economies
- Explosion in subsidies likely to be cut back later

Future potential

- Future biofuels could have lower ghg emissions than today's technologies
 - if support provides incentives for improvement
- They may provide cost-effective emissions reductions, although probably on only a limited scale
- Ligno-cellulosic ethanol may be capable of supplying a few percent of transport fuel sustainably