Zero value of time?

Automation and the value of time in passenger transportation

Mogens Fosgerau

OECD/ITF 25-26 September 2018

UNIVERSITY OF COPENHAGEN

Introduction

- Travel time is becoming less costly for travelers
 - New tech promises to free car drivers from driving
 - Mobile devices make public transport passengers more productive
- Transport policy is about trading off money and time
 - Infrastructure
 - Pricing
 - Accessibility

- The value of travel time (VTT) summarizes trade-off
- What will happen to VTT?
 - Derive from first principles
- What are the policy implications?
 - Congestion pricing, congestion dynamics, travel time variability, urban form
- WTP for self-driving cars

The value of travel time when in-vehicle time is productive

• Main take-away, based on more complete theory

 $VTT = (1 - \alpha)w$

- Value of travel time is based on net after tax wage rate *w*
- Scaled by (1α) , where α is the productivity of in-vehicle time relative to time at work or at home

- In vehicle time is either spent producing leisure or working
- More complicated expressions are available that take into account the marginal utility of different time uses

Business travel - Cost saving approach

- Extreme assumptions
 - Travel time is unproductive
 - Business travelers are zombies

• VTT is then equal to gross wage rate, including indirect taxes

VTT = W

 Unaffected by in-vehicle productivity

Business travel – Hensher approach and simplified

- Hensher: decompose VTT into
 - The gross wage rate, multiplied by the proportion of travel time that is unproductive.
 - The value of resting during travel
 - The willingness-to-pay of the worker for converting business travel time not spent producing leisure into working time
 - The willingness-to-pay of the worker for converting business travel time spent producing leisure into leisure time.
- Complicated, elusive

- Simplify:
 - Business travelers are zombies
 - But may be productive, also while traveling
- Then

 $VTT = (1 - \alpha)W$

• Same as for private travel, except now based on gross wage rate

Congestion pricing – static analysis

- Increase in in-vehicle productivity α
- Leads to lower trip cost
- Induces more traffic
- Both with and without optimal tolling

Scheduling utility – trip timing

- Include (1α) in two different ways
- Model 1:

 $(1 - \alpha)U_{departure\ time} + (1 - \alpha)U_{arrival\ time}$

• Model 2:

 $(1 - \alpha)U_{travel time} + U_{arrival time}$

 t_{dep}

 $t_{arr} = t_{dep} + t_0$

Time

Congested demand peaks – bottleneck congestion

- Bottleneck with fixed capacity
 - Fixed no. of cars pass per time unit
- Length of peak determined by number of cars
- Timing of peak determined by equilibrium
 - Travelers indifferent between different departure times
- Queue length also determined by equilibrium

Congested demand peaks – bottleneck congestion

- Model 1, α^{\uparrow}
- No direct impact on duration of peak
- No direct impact on queue length at any time during peak
- Indirect effect through induced traffic
 - Expect the duration and queue length to increase

- Model 2, α^{\uparrow}
- No direct impact on duration of peak
- Queue length increases during peak
- Smaller indirect effect through induced traffic
 - Expect the duration and queue length to increase
- Driverless cars concentrate in
 Capacit middle of peak
 travel concentrate
 - Capacity may improve, reducing travel cost for everybody. Users of non-driverless cars may be worse off

Travel time variability

- Workers with fixed work start time
 - VTTV is proportional to standard deviation of travel time
- Workers with flexible work start time
 - VTTV is proportional to variance of travel time

- Impact of productivity α
 - Model 1: VTTV proportional to 1α
 - Model 2: VTTV independent of 1α
- It is important to distinguish between models 1 and 2

Monocentric cities

Conclusions

- Increasing in-vehicle productivity
 - Reflected in lower VTT
- Impact on case for infrastructure investment is ambiguous
 - Lower VTT vs induced traffic
- The economic argument for road pricing (Pigou) is unchanged
 - Traffic volumes will increase, even in the presence of optimal toll
 - Optimal toll may increase or decrease
- The value of travel time variability will not increase

- Demand peaks
 - No direct effect on duration
 - Driverless cars will tend to concentrate in the middle of peaks
 - Queue lengths may increase
 - Capacity may improve, reducing travel cost for everybody. Users of nondriverless cars may be worse off
- More dispersed cities (relative terms)
 - Large cities may become even larger

The value of travel time in a self-driving car

- Compare different transport modes
 - Car driver vs car passenger, train passenger etc.
 - Control for self-selection to find comfort effect
- Evidence suggests that $\alpha = 0.25$ is a large number
- And only on the parts of the road network where technology works

- Willingness-to-pay for self-driving technology
 - Car drives 300,000 km during lifetime
 - Suppose technology works on half: about 2,500 hours
 - Worth about 25,000 EUR
 - Allow for discounting: 12,500 EUR
 - Suppose $\alpha = 0.1$
 - Then WTP is 1250 EUR, i.e. not a lot
- Very low compared to current predictions of cost of technology.
- Suggests small market share, for a long time