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Executive summary 

What we did 

This report examines and determines the most relevant cases for artificial intelligence (AI) use in a 
transport planning context for crash prevention on an entire road network. It explores the possibility of 
using computer vision to acquire relevant information and the capability of computer models to map high-
risk locations. It offers recommendations to stakeholders on the development and appropriate use of life-
saving AI solutions. 

The report summarises the findings of an ITF roundtable in February 2021 that brought together experts 
from 33 organisations and 15 countries. Participants represented public authorities, the transport, 
technology and data industries, research institutes and international organisations. 

What we found 

AI facilitates proactive traffic safety management in two ways: Through sensors and systems such as 
computer vision, it helps collect data on road infrastructure condition and traffic events over an entire 
road network. And, through predictive models, AI learns to identify locations on the network where crash 
risk is highest. In regions where precise and relevant data exists, AI can identify dangerous locations 
proactively, before crashes happen. 

Decision makers are more familiar with the traditional reactive approach to traffic safety. This involves 
countermeasures – often revised road geometry – at locations where one or several crashes have 
occurred. It is straightforward, attracts broad public support and often appears to reduce crash numbers. 
However, the statistical artefact known as regression to the mean often inflates the claimed benefits and 
makes the reactive approach appear more efficient than it is. 

AI pushes the limits of pattern recognition beyond human capabilities and may thus discover hitherto 
unknown crash-prone road configurations. However, many consider AI a black box, lacking traditional 
statistical models’ transparency and interpretability of predictions. Fortunately, recent developments in 
the field of “explainable AI” have begun to fill the gap by disclosing which factors have most influence on 
predictions overall, which factors explain any given prediction and what would result from changes to 
design or traffic management on a given road segment. 

Computing power being broadly available, what now limits AI is availability of data and of skilled individuals 
to supervise modelling. Data are often in short supply because they remain in silos instead of being shared, 
the main barrier being fear of litigation for disclosure of identifiable personal information. The automotive 
industry holds some of the most precious data for risk prediction, known as “floating car data”: They 
include indicators of traffic volume, speed and incidents of engagement of active safety systems, notably 
antilock braking systems (ABS), electronic stability programs (ESP) and autonomous emergency braking 
(AEB). 
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What we recommend 

Develop a competitive market for the sharing and monetising of traffic and mobility data 

All stakeholders should seek to stimulate the growth of a diverse, competitive and transparent market for 
data from vehicles, telematics, smartphone apps and other services. Governments should acknowledge 
that industrial partners need incentives such as monetisation to lift the barriers to data sharing, develop 
innovative quality data products and cover the cost of data collection, cleaning, analysis, safe storage and 
transfer. Collection of road asset data using computer vision is an example of such data products. Road 
safety could be neglected and lack quality data if data producers do not consider it a core business activity. 
Relevant privacy safeguards must be in place as an intrinsic part of the legal frame for monetisation of 
traffic and mobility data. 

Do not wait for real-time data before developing risk maps 

Road network managers, researchers and consultants should remain aware of hurdles preventing access 
to real-time data from vehicles, smartphones and wearables. They should start by developing risk 
prediction models that feed on aggregate instead of real-time data, and map abnormally dangerous 
locations on the road network. Once aggregated over a year or a week, data have fewer privacy issues and 
a lower market value but remain highly relevant to risk mapping applications. Rotterdam provides an 
illustration of how AI can learn and predict crash risk with aggregate input data. 

Mandate the sharing of aggregate vehicle data 

Governments should consider defining a minimum set of data for all vehicle manufacturers to report, in 
an anonymous standard aggregate format, to facilitate elaboration of proactive road safety strategies. 
Such a set could include data on traffic volume, speed distribution and locations where vehicles’ active 
safety systems (ABS/ESP/AEB) engaged. The data’s value for producing performance indicators related to 
the global road safety performance targets set by the United Nations should be a criterion for what should 
be in the data set. Precise governance aspects covering consent, data collection and data processing 
should be set by representatives of data protection authorities and privacy organisations, road transport 
authorities, industry/businesses and academia. 

Learn from other fields and best practice for data sharing and privacy protection 

Stakeholders should draw parallels with other contexts where government seeks access to crowd-sourced 
data, such as mobile telecommunication data. Partners should consider more secure alternatives to data 
exchange, such as exchange of queries and responses instead of raw information. Data providers, 
integrators and marketplaces should envisage hosting a secure computing workspace to facilitate such an 
approach. 

Support research and innovation towards trusted and explainable AI 

Authorities and sponsors should support research on AI use in computer vision and risk prediction. They 
should build trust in AI by facilitating benchmarking and validation of methods (including machine learning) 
for proactive road network safety management. New systems’ capabilities should be fully assessed. 
Priorities should include development of “explainable AI” techniques providing road network authorities 
with clarity on which interventions would bring the most benefits. Funding must also be available to road 
safety professionals to conduct post-intervention assessment and validate or recalibrate the risk prediction 
tools. 
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Align new tools with precise policy objectives 

Governments should verify that new tools for proactive safety management do not distract from clear 
objectives. If the policy goal is to eliminate fatal and serious crashes, governments should commission 
research to assess the capability of proxy data and risk mapping tools to predict those specific crash types, 
in both cross-sectional and longitudinal analyses. 

Develop new skills and digital infrastructure 

Authorities need to develop the skills to become informed consumers in this complex field. They should 
seek to promote a multidisciplinary approach to road safety combining expertise in data science, 
technology and safety. Authorities should also create national access points for collecting and reporting 
transport-related data. 

Clarify regulatory frameworks for data protection and digital security 

Governments should clarify privacy protection rules where uncertainty on their interpretation deters data 
sharing. Such clarification would benefit all economic sectors and areas of public action, well beyond the 
road safety field. Governments should also examine how freedom of information laws interact with data 
protection laws. Finally, they should review current regulations for protection of proprietary data and 
intellectual property against misuse of data and infringement of data exchange conditions. 

Design user-friendly, risk-mapping tools 

To encourage tool uptake and road safety investment, authorities should specify particular features in the 
risk-mapping tools they develop or procure. Tools should include estimates of the total annual social cost 
of predicted crashes on each road section and estimates of interventions’ benefit/cost ratio. They should 
also have accessible, user-friendly interfaces. The city of Rotterdam and the International Road Assessment 
Programme are among entities that have developed examples of such tools. 
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The proactive approach to road safety 

Road traffic injuries kill 1.35 million people each year, and are the top cause of deaths worldwide among 
those aged 5 to 29 (WHO, 2018). More than half of those killed are vulnerable road users – motorcyclists, 
bicyclists and pedestrians. In response to this challenge, the UN General Assembly (2020) proclaimed the 
Decade of Action for Road Safety 2021-2030 and set a target of preventing at least 50% of road traffic 
deaths by 2030. 

Without new tools and methods, the world is unlikely to meet UN targets. An earlier decade of action for 
road safety stopped the increase in road deaths but failed to reduce their number significantly. 
Fortunately, considerable change is happening in the road safety field. A growing number of national and 
local governments adopted Vision Zero and seek to eliminate road traffic deaths. To make it happen, they 
embrace a holistic approach to traffic safety called the Safe System approach. 

The principle of a Safe System 

The Safe System approach is considered the best practice among road safety professionals. It 
acknowledges that humans inevitably make mistakes, and that all parts of the transport system must 
contribute to avoiding a fatal outcome in the event of a collision. Vehicle design, road geometry and traffic 
rules should reflect the human body’s known limits in withstanding crash forces. Roads and streets should 
be forgiving. Vehicles should protect both their occupants and vulnerable road users. 

In a Safe System, the planning approach is not strictly reactive to incidents; such an incremental approach 
lacks pace, scale and ambition. Instead, as Table 1 shows, it is proactive, identifying risk factors in all parts 
of the system and seeking to address them before serious harm occurs. It puts particular emphasis on 
building a safe road system, rather than fixing crash accumulation spots. 

Table 1. Comparing the traditional road safety approach with a Safe System 

Question Traditional road safety approach Safe System approach 

What is the problem? All traffic crashes 
Crashes resulting in fatal and serious 
injuries 

What is the goal? Reducing fatal and serious injury numbers Eliminating fatal and serious injuries 

Which planning approaches? 
Reacting to incidents 
Incremental approach to reduce the 
problem 

Proactively targeting and treating risk 
Systematic approach to build a safe road 
system 

What causes the problem? Non-compliant road users 
People inevitably make mistakes 
People are fragile 

Who is ultimately responsible? Individual road users 
Responsibility is shared by individuals with 
system designers 

How does the system work? Isolated interventions 
Different elements are combined so that if 
one fails, others provide protection 

Source: Adapted from ITF (2016a) and Belin et al. (2012). 
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The reactive and proactive approaches 

Decision makers and citizens are familiar with the traditional reactive approach to traffic safety involving 
the redesign of a location where one or several crashes have occurred. The rationale is that crashes will 
continue to happen where they have already happened, especially where a spatial cluster has occurred. 
The reactive approach is straightforward, attracts broad public support and often appears to reduce crash 
numbers. However, some crash number reduction would most likely have happened without intervention, 
through the statistical phenomenon called regression to the mean (Box 1). 

Box 1. Regression to the mean 

In most before-and-after studies reported in road safety literature, remedial measures have been 
deployed after a period of collision counts deemed unacceptably high. However, a period of high collision 
counts at a specific location is often due to random fluctuation in relatively small collision numbers. Due 
to such fluctuation, it is likely that collision counts will later return to a lower baseline level regardless of 
the value of the intervention. This natural statistical phenomenon is known as regression to the mean. 

Figure 1. Separating regression to the mean from the true benefit of an intervention 

 

Studies assessing road safety programmes’ effectiveness are notoriously bedevilled by the problem of 
regression to the mean. Figure 1 indicates that most of the change observed immediately after a road 
safety intervention would have been observed anyway, even without intervention, simply through 
regression to the mean. 

Source: Adapted from Fawcett et al. (2017). 

 

Another weakness of the reactive approach is that crashes must happen at a given location, and be 
reported to the authorities, for the location to be considered for safety treatment. Not only is this morally 
questionable, but such an approach can be incomplete or biased due to the vast under-reporting of 
crashes (ITF, 2011; Aldred, 2018). Under-reporting being greatest in lower-income regions, the approach 
may be biased against diagnosis of high-risk locations in the regions most needing road safety treatment. 

A proactive approach also takes crash data as an input, but complements it with other kind of information 
and seeks to identify systematic risks and solutions. Its benefits are not limited to the places where crashes 
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have occurred and been reported. The following examples help illustrate the proactive approach to road 
safety in the context of road design and operations: 

 By observing a correlation on many sites between a specific junction design and casualty 
numbers, one can predict the casualty risk on all parts of the network designed in that way and 
intervene on all such locations regardless of their crash history. 

 Knowing the correlation between speed and crash risk (ITF, 2018), one can map precise speed 
data to identify areas where speed management solutions could prevent the next serious injury. 

 By developing models capable of predicting the number of serious crashes from traffic data (close 
calls, vehicle speed and mass, emergency braking events, swerving, etc.), one can identify 
dangerous locations before crashes happen. This is often described as using surrogate safety 
metrics (Box 2). Such models can be further improved using other types of data, including road 
user mix, road geometry and weather, to name only a few. 

Underpinning the use of surrogate safety metrics is the assumption that correlations exist between crashes 
and conflicts. This explains why analysis of conflicts helps predict crashes. Hydén (1987) uses a “safety 
pyramid” to describe this relationship (Figure 2). The pyramid base consists of normal traffic encounters 
that are quite safe and frequent. The tip of the pyramid represents the most severe events, such as crashes 
resulting in injuries or fatalities, which are highly infrequent. 

Hydén proposed that the number of conflicts could serve as a proxy to predict, and hence prevent, 
occurrence of rare but more serious crashes. A method for counting the number of conflicts is a surrogate 
safety metric. 

Figure 2. Hydén’s safety pyramid 

 

Source: Chang, Saunier and Laureshyn (2017), adapted from Hydén (1987). 

Experts have challenged the use of surrogate safety metrics. Some fear such metrics would be elaborated 
to predict all crashes, not just serious and fatal ones, distracting professionals from focusing on preventing 
the latter type of crash. The concern is legitimate and is based on the fact that serious and fatal crashes 
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are rare. Training statistical models on rare events is difficult, as it requires longer time frames and a wider 
road network. Ultimately, misuse of surrogate safety metrics could result in fewer crashes but more fatal 
and serious injuries. 

Accordingly, several developers of surrogate safety metrics have worked to account more precisely for 
road users’ kinetic energy, conflict angle and vulnerability so as to predict serious and fatal crashes. Indeed, 
one could argue that a risk of head-on collisions at high speeds is enough to predict serious and fatal 
casualties, regardless of crash history or near misses. The International Road Assessment Programme 
(iRAP), for instance (Error! Reference source not found.), takes kinetic energy into account in its star rating o
f road assets. 

A major strength of surrogate safety metrics is their ability to estimate a road safety intervention’s effects 
within weeks, whereas analysis of serious and fatal crash data can take three to five years, at best. 

 

Box 2. Surrogate safety metrics 

Surrogate safety metrics are increasingly used to diagnose traffic safety problems so that action can be 
taken before a serious crash happens. They are typically based on identifying the occurrence and severity 
of traffic conflicts involving evasive actions such as braking or swerving, also known as near misses or close 
calls. Using artificial intelligence (AI), large amounts of video footage and data points from roadside 
cameras and sensors can be analysed to identify close calls in which a crash was narrowly avoided. 

Street imagery can be used to support assessment of roads’ safety characteristics. This is already being 
done for attribution of star ratings in road assessment programmes. The next generation of star rating 
programmes will likely benefit from more frequent and broader image data collection as well as automated 
image analysis using computer vision. Drones and satellites can capture additional data and will play an 
increasing role in road safety. Such innovations will facilitate road safety investment planning as well as 
monitoring of results. 

Source: ITF (2019). 

What is Artificial Intelligence? 

Artificial intelligence (AI), a term coined in 1956, is an umbrella term for algorithmic and computer science 
techniques allowing computer software to learn from experience, perceive, cognise, adapt to situations, 
reach decisions and act. Machine learning (ML) is an area of AI that involves detecting patterns in data, 
making predictions or enabling actions to be taken without explicit programming in the form of the usual 
“if-then” routines and without classic automation and control engineering. Most people are familiar with 
the use of AI in games and speech recognition. Its use by government is less visible but nonetheless 
promising. To foster use of trustworthy AI solutions, the G20 has adopted human-centred AI Principles 
that draw from the OECD AI Principles (Box 3). 

The OECD AI Experts Group defines an AI system as “a machine-based system that can, for a given set of 
human-defined objectives, make predictions, recommendations or decisions influencing real or virtual 
environments”. AI applications are experiencing rapid uptake in sectors where they can detect patterns in 
large volumes of data and model complex, interdependent systems to improve decision making (OECD, 
2019b). 
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AI has undergone rapid transformation over the last decade. Since 2011, the AI subset called machine 
learning has dramatically improved machines’ ability to make predictions from historical data. The OECD 
(2019b) cites “the maturity of a ML modelling technique called ‘neural networks’, along with large datasets 
and computing power”, as underlying the recent expansion in AI development. 

Hopes and questions raised 

AI facilitates proactive management of a safe road network in two ways. First, through sensors and systems 
such as computer vision, it helps collect and label data on infrastructure condition and traffic events over 
an entire road network. Second, through predictive models, AI learns to identify locations where crash risk 
is highest before crashes happen. For both aspects, this report outlines where and how AI adds value and 
what policy makers need to know to make the best use of AI. 

Trust and public acceptance will determine the adoption of AI-based techniques in the field of road safety, 
as in other fields. Is AI’s performance superior to those of various other techniques? Are AI outputs 
transparent and explainable, or do AI systems function as an impenetrable black box? Can AI provide 
guidance on which countermeasure could address a safety problem? Will road authorities embrace the 
predictive safety management principle? Will authorities have the resources to elaborate and validate 
crash prediction models and react to these new crash predictions? 

AI is notoriously dependant on provision of large amounts of quality data. Will drivers, carmakers, 
commercial transport operators and telematics companies be willing to share the data they produce? Will 
they consider their data sensitive for privacy or commercial reasons? What are effective ways to protect 
privacy? Should authorities ask the transport industry to provide safety-relevant data free of charge? 
Examples exist of public agencies that have developed risk prediction models with no or limited data from 
the private sector, but the roundtable discussion left no doubt on the added benefit of using data from 
the transport industry. 

Crash risk prediction could benefit from a vast number of data inputs, such as speed compliance, hard 
braking events, road star rating and exposure data, to give just a few examples. Which data sets are the 
most helpful in prediction of road crashes? 

Crash data form the pillar of crash prediction models. Are there effective methods for training AI systems 
where crash data is under-reported to police? Will the use of incomplete crash data lead to AI perpetuating 
existing biases to the detriment of some user groups, areas or populations? 

The following two chapters reflect the main ways AI can support road safety interventions. One involves 
sensing the road asset and traffic conditions, including near misses. The other identifies risky areas and 
elaboration of countermeasures. 
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Box 3. Principles for responsible stewardship of trustworthy AI 

The OECD calls on all AI actors to promote and implement, according to their respective roles, the following 
principles for responsible stewardship of trustworthy AI. 

1. Inclusive growth, sustainable development and well-being 

Stakeholders should proactively engage in responsible stewardship of trustworthy AI in pursuit of 
beneficial outcomes for people and the planet, such as augmenting human capabilities and enhancing 
creativity, advancing inclusion of underrepresented populations, reducing economic, social, gender and 
other inequalities, and protecting natural environments, thus invigorating inclusive growth, sustainable 
development and well-being. 

2. Human-centred values and fairness 

a) AI actors should respect the rule of law, human rights and democratic values, throughout the AI system 
lifecycle. These include freedom, dignity and autonomy, privacy and data protection, non-discrimination 
and equality, diversity, fairness, social justice, and internationally recognised labour rights. 

b) To this end, AI actors should implement mechanisms and safeguards, such as capacity for human 
determination, that are appropriate to the context and consistent with the state of art. 

3. Transparency and explainability 

AI Actors should commit to transparency and responsible disclosure regarding AI systems. To this end, 
they should provide meaningful information, appropriate to the context, and consistent with the state of 
art: i) to foster a general understanding of AI systems, ii) to make stakeholders aware of their interactions 
with AI systems, including in the workplace, iii) to enable those affected by an AI system to understand the 
outcome, and, iv) to enable those adversely affected by an AI system to challenge its outcome based on 
plain and easy-to-understand information on the factors, and the logic that served as the basis for the 
prediction, recommendation or decision. 

4. Robustness, security and safety 

a) AI systems should be robust, secure and safe throughout their entire lifecycle so that, in conditions of 
normal use, foreseeable use or misuse, or other adverse conditions, they function appropriately and do 
not pose unreasonable safety risk. 

b) To this end, AI actors should ensure traceability, including in relation to data sets, processes and 
decisions made during the AI system lifecycle, to enable analysis of the AI system’s outcomes and 
responses to inquiry, appropriate to the context and consistent with the state of art. 

c) AI actors should, based on their roles, the context, and their ability to act, apply a systematic risk 
management approach to each phase of the AI system lifecycle on a continuous basis to address risks 
related to AI systems, including privacy, digital security, safety and bias. 

5. Accountability 

AI actors should be accountable for the proper functioning of AI systems and for the respect of the above 
principles, based on their roles, the context, and consistent with the state of art. 

Source: OECD (2019a). 
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Sensing and sharing safety-relevant  

data on an entire road network 

No proactive approach to road network safety can be developed without provision of quality data on the 
road asset, traffic and traffic events. Data provision is what limits and will continue limiting the 
performance of AI models in this area. Hence this section explores the various data sources that are most 
likely to help predict crash risk. It considers the role of AI in data collection and proposes data governance 
solutions to facilitate data sharing. 

AI is particularly valuable in video processing, e.g. to detect traffic conflicts or infrastructure design 
features. Fixed equipment, including CCTV cameras and roadside traffic sensors, provides a rich stream of 
information on traffic conditions. In New York City, for instance, researchers detected occurrences of 
double parking using an AI computer vision application with a municipal open data feed providing images 
from 700 CCTV cameras. To collect data over an entire road network however, other data sources, such 
as probe vehicles, are needed. 

Nine out of ten of the world’s road deaths occur in low- and middle-income countries (LMICs). Can data-
driven crash prediction models work in LMICs, where the market penetration of connected vehicles will 
remain low for the near future? Yes, in two ways. The first concerns computer vision applications in road 
surveys commissioned to assess risk level, such as the surveys feeding into iRAP assessments (Box 4). 
Computer vision helps reduce such surveys’ cost and thus facilitates diagnosis of road safety risk across a 
much wider network. The second way uses the telematics devices mounted on large commercial fleets, 

regardless of vehicle age.1 Not only do telematics capture data on vehicle dynamics, but they also offer 
the opportunity to collect images of the road thanks to the increasingly popular on-board cameras. In 
LMICs, smartphone apps could also become a key source of data on vehicle dynamics. Partnerships with 
insurance companies and navigation app developers should be envisaged to this end. 
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Box 4. Automated coding for the International Road Assessment Programme 

The International Road Assessment Programme is a registered charity established to deliver the vision of 
a world free of high-risk roads. It has partnerships with regional, national and local government, 
development and financing institutions, research bodies and civil society in more than 100 countries, with 
over a million kilometres of roads assessed thus far. 

iRAP’s star rating models predict crash risk for each road section. They are based on from road attributes 
using well-established crash modification factors (Box 5). Road attributes primarily reflect road design and 
conditions, but also include supporting data such as traffic speed and flow. Collecting this information 
typically requires dedicated survey teams and manual coding of attributes, which is a barrier to global 
deployment and frequent updating of road assessments. 

iRAP’s accelerated and intelligent collection and coding of road attribute data, known as AiRAP, has the 
potential to reduce the time and effort road safety assessments require, reduce costs per unit of road 
length, improve accuracy and make data available for every road on earth. To unlock this potential, AiRAP’s 
main goal is to source road attribute, traffic flow, and speed data following iRAP’s “common global 
specification” and map safety performance and star ratings. 

AiRAP captures advances in artificial intelligence, machine learning, vision systems (street and sky), LIDAR, 
telematics and other data sources. Providers can propose translation routines to convert machine 
collected data into iRAP-compliant data (Figure 3). The conversion is certified by iRAP. The data are to be 
published worldwide, along with any associated conditions of use, as agreed by iRAP and the provider. 

Source: iRAP (n.d.). 

Figure 3. Source of ai-RAP data and conversion to iRAP attributes 

 

Source: iRAP (n.d.). 
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Box 5. Crash modification factors 

A crash modification factor (CMF) is a multiplicative factor used to compute the expected number of 
crashes after a given countermeasure at a specific site. For instance, a countermeasure with a CMF of 0.80 
is expected to reduce the number of crashes by 20%. 

The Highway Safety Manual (AASHTO, 2010) provides information and tools to facilitate roadway design 
and operational decisions based on a quantitative assessment of their safety consequences. CMFs are one 
such tool, used either to support an agency's roadway safety management process or as input to safety 
prediction methods. 

CMFs come with guidance that specify in which context the results are transferable. Roundtable 
participants stressed how important such guidance is to prevent misuse of CMFs. 

Source: CMF Clearinghouse (2021). 

Roadway attributes 

Figure 3 gives an idea of the diversity of road attributes that could contribute to a road safety assessment. 
Infrastructure star rating, such as that delivered by the International Road Assessment Programme (Box 4) 
is quite a data hungry process. 

One can monitor pavement condition using AI with data from dedicated survey vehicles, from partner 
fleets or from smartphones. Vehicle vibration, pavement images and LIDAR point-cloud are examples of 
data sources for pavement maintenance (ITF, 2021). Smartphone motion sensors and cameras can supply 
vehicle vibration data and pavement images. Specialised companies propose such a service, with 
smartphones mounted on patrol or survey vehicle dashboards. Alternatively, road users may allow apps 
to collect such data when they drive. 

Street view images are a particularly useful source of information. The state of North Carolina is developing 
computer vision to automate roadway feature extraction from video logs (Box 8). New vehicles come with 
cameras and other sensors to read road signs and offer various advanced driver assistance systems (ADAS). 
Autonomous vehicles will come with even more sensors and greater connectivity. These trends create an 
opportunity to collect much more information on the road asset layout and condition. 

Curb activity and the number of property access points along a road could make a significant contribution 
to a model’s prediction power. Yet this information is rarely available and needs to be created by skilled 
individuals from local data sources. 

Some attributes, such as slippery road surfaces in winter conditions, are dynamic by nature. Collecting 
such attributes in real time enables road authorities to manage road risk in a timely manner (ITF, 2019). 
Data collection could happen in real time where possible, but also in batches to support non-real-time 
applications, e.g. risk mapping over an entire road network, including segments without mobile data 
coverage. 

Traffic attributes 

The traffic attributes of a given road section include traffic volume, speed and events such as near misses. 
A single pass of a probe vehicle cannot capture traffic attributes, although it can capture most roadway 
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attributes simultaneously. Estimating traffic attributes requires a fleet of instrumented vehicles or road 
users, raising practical questions about fleet representativeness and data privacy. 

There was consensus among roundtable participants on collecting traffic volume, speed and emergency 
manoeuvre data as a matter of priority to feed into risk prediction models. They suggested collecting this 
data via vehicles, smartphones, wearables and other devices to achieve whole network coverage, even in 
LMICs. Analytics companies such as The Floow already supply telematics data to the iRAP. One participant 
reported using data from a system that not only records vehicle position and dynamics, but also fits two 

cameras: one facing the driver and the other on the road ahead.2 There is hardly any limit to the number 
of traffic attributes that can be collected and might ultimately increase the predictive power of risk 
prediction models. 

Traffic volume 

Experts identified traffic volume as being among the most useful input data for risk prediction modelling. 
Traffic volume, frequently used as exposure data, is the cornerstone of risk analysis and yet is often lacking 
in risk prediction modelling exercises. 

Telematics companies have estimated traffic volumes along entire road networks in several countries. 
Since the source data come from a sample of the vehicle stock and lacks representativeness, the estimation 
is particularly challenging. Traffic volume for areas near logistics depots could be overestimated due to the 
concentration of instrumented commercial vehicles, for instance, while volume in lower-income 
residential areas could be underestimated due to the lower market penetration of high-end connected 
vehicles equipped with on-board navigation systems. 

The key to estimating traffic volume on an entire road network lies in the availability of ground truth data, 
such as traffic counts, as open data. The University of Central Florida estimated cycling volumes, using trip 
data from a fitness app called STRAVA, by modelling the relationship between the volume from the app 
and that from actual counts. Although incomplete and biased, the app data were adjusted to provide a 
bicycle traffic estimate for every link of the cycling network. The same technique could be applied to any 
source of traffic data, such as insurance or navigation telematics. Agilysis, an analytics company, reports 
having conducted such a protocol to estimate traffic data on every road segment in the UK. 

Traffic speed 

Speed management is at the core of the Safe System approach, as it determines the amount of harmful 

kinetic energy in the transport system. Speed limit compliance is one of 12 voluntary targets3 for the new 
UN Decade of Action for Road Safety 2021-2030. The target for 2030 is to halve the proportion of vehicles 
travelling over the posted speed limit. Evidence suggests that a 1% change in speed results in a 4% change 
in the road fatality number (ITF, 2018). 

There is thus a need to draw speeding heat maps as a basis for development of targeted engineering, 
education and enforcement measures. Frequent updates of such maps would help in assessing such 
measures’ effects. A road safety software provider called VIA reports using vehicle telematics data from 
the HERE platform to provide most city authorities in the Netherlands with speed maps. VIA’s dashboard 
separates out congested periods to reveal speeds in free flow conditions. 

GPS technology could power traffic speed data collection in some circumstances, but is not accurate 
enough in urban contexts and is unavailable in tunnels. A telematics company called OSeven reports 
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performing a data fusion exercise with GPS and accelerometer signals. Another solution is to read vehicles’ 
odometer data feed. 

Biases in the vehicle sample could have a significant effect on speed estimates’ accuracy. Insurance 
telematics nudge drivers to adopt a safer attitude and comply with speed limits, so insurance telematics 
data may not be representative of average driver behaviour. Navigation telematics, by flagging speed 
enforcement sites, could facilitate deliberate speeding between them. Yet despite its vulnerabilities, speed 
data covering an entire road network should be a priority item in the list of safety-related data for road 
authorities to procure. 

Routine provision of speed data by all car manufacturers could alleviate the biases found in insurance and 
navigation telematics data, although it would introduce a bias towards more recent models of connected 
vehicles. 

Near misses and other potential crash predictors 

Naturalistic driving studies often result in mapping of abrupt vehicle movements, but rarely provide a 
sufficient sample size to cover a complete network or provide robust crash predictors. To identify hotspots 
of abrupt vehicle movements at scale, it thus seems essential to take advantage of existing technology, 
such as connected vehicles and smartphones. 

Box 6. Road safety-related minimum universal traffic information 

The European Union’s Directive 2010/40/EU calls for provision of road safety-related minimum universal 
traffic information (known as safety-related traffic information or SRTI) free of charge to road users. The 
European Commission specifies that the SRTI service covers eight categories of events or traffic conditions: 

(a) temporary slippery road; 

(b) animal, people, obstacles, debris on the road; 

(c) unprotected accident area; 

(d) short-term road works; 

(e) reduced visibility; 

(f) wrong-way driver; 

(g) unmanaged blockage of a road; 

(h) exceptional weather conditions. 

Source: European Commission (2013). 

 

To develop AI-powered crash risk prediction, roundtable participants considered collection of customer 
engagement data for anti-lock braking systems (ABS), electronic stability programs (ESP) and autonomous 
emergency braking (AEB) to be a major opportunity. The automotive industry is not currently required to 
collect ABS/ESP/AEB engagement data systematically, but some carmakers do collect and monetise such 
data. Volvo’s Connected Safety function, for instance feeds ABS and ESP data to the cloud so that other 
Volvo vehicles can benefit from them. 
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Some data processing methods use thresholds to simplify raw signals but the process can destroy 
information. It may also be difficult to compare or merge data from various providers adopting different 
thresholds. More generally, data integration always entails information loss. One may lose the most 
important part of the data without even being aware of it. Ideally, one should start integrating data after 
having defined the use case for it. Careful selection and processing of sensor signals determine the data 
usefulness for a specific use case. 

Even if signal processing methods are harmonised, differences in the sensor hardware limit the 
comparability of data collected from different vehicles or devices such as smartphones and telematics 
equipment. Lime, a micro-mobility company, reports possible variability in data availability and applicable 
safety metrics between vehicle models. The Floow, a telematics company, observes that accelerometer 
chipsets can differ between smartphones even for the same make and model. Normalising the signal from 
each device is a huge task that not all analytics companies do. 

Barcelona City Council, looking to increase road safety, has fitted buses and other municipal vehicles with 

Mobileye’s collision avoidance system.4 The technology constantly scans the environment, including 
certain blind spots not visible to the driver. Mobileye experts consider near misses and hard braking events 
to be the most significant crash predictors. They have mapped braking and cornering hotspots using 
connected vehicles in several countries, including LMICs. With this information, road authorities can 
undertake proactive and targeted inspections, understand if a serious crash risk exists and take action to 
address it. 

Lime reports using vehicle sensor data to automatically detect potential crashes. The solution involves 
machine learning to identify a series of safety-critical event signatures. The data thus gathered provides 
insight that can assist in tailoring safety programmes, local operations and hardware development. 

Data sharing and aggregation 

Local and national governments have access to a wealth of information through roadside sensors and CCTV 
cameras. They should not neglect this information source and should consider making it open data. In turn, 
open data should be well publicised so crash prediction model developers can benefit from it. 

However, in most cases the vast majority of the road network is not equipped with sensors. A risk 
assessment covering an entire road network thus requires access to private sector data. The EU Data Task 
Force (DTF) created an ecosystem for sharing safety-related traffic data and information between vehicle 
manufacturers and governments (Box 7). It has been praised for taking the automotive industry in the 
same direction as the air transport industry, which adopted the principle of sharing all safety-related data. 

The following sections examine several barriers to the sharing of data: 

 the silo effect – the lack of connections between organisations and between teams within 
organisations 

 technical costs (collecting, processing, hosting, etc.), which are not negligible 

 privacy protection imperatives and associated fears of litigation, often cited as the #1 barrier 

 commercial sensitivity. 
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Silos and interoperability 

Data marketplaces could go some way towards breaking the silos. They also create a financial incentive for 
disseminating data that would otherwise not be shared spontaneously. HERE, CARUSO and Amazon are 
among the companies developing traffic data marketplaces. The HERE platform includes free data sets 
that original equipment manufacturers (OEMs) provide to governments, public agencies and universities, 
with conditions specified by a creative commons licence or other licence. 

With its global presence, iRAP is working to create a marketplace that federates stakeholders and secures 
data from a wide range of sources and competing suppliers, using specifications tailored for the road and 
traffic attributes that underpin star rating algorithms. 

Caution is needed to avoid creating yet another data silo, one limited to road safety professionals. Most 
of the data used in road safety analysis could serve other purposes as well, powering research in economic 
activity, climate change, public health and other fields. Data sharing platforms should facilitate mutual 
exchange among a range of research fields. Making such connections could also strengthen political 
support for road safety policies, for instance when speed management reduces greenhouse gas emissions, 
local air pollution and noise in addition to making the road network safer. Elected officials rarely consider 
road safety a top priority, which is why co-benefits must be highlighted. 

Interoperability greatly facilitates data sharing. A cluster of vehicle manufacturers support a data model 

called Vehicle Signal Specification (VSS) and have started deploying it in production vehicles.5 VSS 
introduces a domain taxonomy for vehicle signals that could become a standard in automotive 
applications. Similarly, the automotive industry’s car-to-cloud data standard, called SENSORIS, ensures that 

data from separate manufacturers can easily be combined.6 If widely adopted, such standards will facilitate 
data sharing within the industry, with government agencies and with other parties. Different fleets could 
use a single application programming interface, unlike today when data aggregators’ approaches vary by 
manufacturer. Data standards could make it easier for manufacturers to monetise their data, selling it to 
an aggregator or a telematics company. A common data format from cloud to cloud could also facilitate 
data merging, for instance when several manufacturers wish to contribute to detection of temporary 
slippery roads. 

To facilitate data set merging, Sustainable Mobility for All (SuM4All), an advocacy platform for international 
cooperation on transport and mobility issues, recommends developing common data platforms at the 
regional and national levels (SuM4All, 2021). This requires collaboration between public, private and civil 
society members to identify priority use cases and corresponding data points. 

Creating a digital representation of road network geography is one challenge in designing a platform for 
sharing and merging road safety data. To what level of detail should the network be described? One 
solution would be to define a standard for geocoding of the network, that all data providers would adopt. 
Another would be to retain raw spatial coordinates and let data aggregators perform whatever analysis 
they need. It is indeed hard to bring data sets together, so this could take more time than doing the actual 
research with them. 
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Box 7. An ecosystem for the exchange of safety-related traffic data and information 

Established in 2017, the EU Data Task Force was a public-private partnership that enabled collaboration 
between vehicle manufacturers and countries to enhance traffic safety for all road users. Its members 
created Data for Road Safety (DFRS) as an ‘ecosystem’ to bring safety-related traffic information to road 
users across the EU, in accordance with EU regulations (Box 6). DFRS involves pooling SRTI data from 
multiple sources, including road infrastructure and various vehicle manufacturers, and making them 
accessible to all project partners. Within the ecosystem, five roles are identified: 

 data sources, which share or provide access to data 

 aggregators, which enrich these data, e.g. harmonising and cleansing data from multiple sources 

 creators, which uses the available data to create SRTI 

 National access points, a regulated role for EU member states, providing access to SRTI 

 Service providers, which render and distribute SRTI directly to end users. 

The ecosystem relies on a common interpretation of Delegated Regulation 886/2013 and the DFRS Multi-
Party Agreement represents practical implementation of EU law. Data are exchanged within the ecosystem 
for the sole purpose of improving road safety, without any financial compensation between the parties. 
The agreement prohibits using the data for any other purpose, as the members consider other uses to be 
commercial use cases. 

The Dutch national access point, NDW, received over a million vehicle-generated messages for ABS 
engagements over the course of a seven-month pilot. This illustrates the potential for sharing of safety-
related data in general, and emergency braking data in particular, by vehicle manufacturers. Aggregation 
of such data to produce ABS engagement heat maps, however, falls outside the scope of pro-bono data 
sharing; it is considered commercial use, as is road asset management. 

Source: EU Data Task Force (2020). 

Monetisation 

Given vehicle crashes’ economic cost – around 3% of GDP in low, middle and high income countries (WHO 
2015, Wijnen et al., 2017) – it is not unreasonable to expect governments to fund procurement of quality 
data in response. The data often come from individuals and their vehicles. The current situation, where 
drivers act as probes/proxies to collect road network data but have no ownership of them, may seem 
paradoxical. Yet drivers commonly trade their data for a free service or discounted insurance premium. 
There is also room for tools that collect personal data and give individuals the choice of selling it or 
donating it to third parties such as governments. 

One rationale for monetising data from individuals is that it creates the financial incentive without which 
much data collection, cleaning, processing and hosting would simply not happen, and the road safety 
community would lack a precious source of information. 

Governments are considering the option of asking the transport industry to provide data free of charge. 
The burden on the industry would remain less than proportionate to the cost of road crashes, an 
externality largely borne by society. Pro bono data sharing is already part of e-scooter operators’ permit 
conditions. The experts did not consider this approach to be the most conducive to deployment of accurate 
risk prediction tools, however. Transmitting, translating, processing, aggregating, anonymising and 
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disseminating data have a considerable financial impact. Mandatory data sharing could be a disincentive 
to collect data in the first place. Participants felt that data quality and availability would go down if policy 
makers required the automotive industry to supply data free of charge to governments. Instances of such 
requirements should be limited to the simplest cases of data reuse. 

The availability of data at a fair cost will depend on the level of competition among data producers and 
data platforms. As in other industries, monopolistic positions could lead to higher prices and hinder 
adoption of data-driven road safety tools. In AiRAP (Error! Reference source not found.), data product s
tandardisation seeks to facilitate competition across providers. It is based on the Common Global 
Specifications for coding of road features. The AiRAP protocol also includes independent confirmation that 
whoever provides data adheres to quality levels and repeatability criteria. Such accreditation offers 
transparency on where the provider matches the criteria and where it does not (e.g. certain countries or 
road types). On the other hand, standardisation could delay the data sharing process. For instance, 
precisely defining each SRTI (e.g. what is a slippery road) is time consuming, especially at the international 
level, whereas the automotive industry is willing to share raw data immediately. 

Privacy 

Privacy regulations such as GDPR in Europe are a major obstacle to sharing of micro-level data, e.g. from 
telematics. Yet GDPR makes people more confident that their data will not be misused: it creates the trust 
that facilitates data collection. People might be more willing to give away their personal data if they knew 
exactly who used it, how they used it and for what purpose. Experts believe many opportunities for 
automated data collection are missed due to high levels of mistrust in government and in private 
companies. Where trust in government is low, the roll-out of high-resolution video cameras, for instance, 
becomes impossible, preventing the wider roll-out of surrogate safety analysis such as that demonstrated 
in the US city of Bellevue, Washington. 

Data protection regulators should work with transport and interior ministers to review and refine the 
trade-offs between protecting privacy and eliminating road traffic deaths. Setting clear rules on this matter 
would lift a major barrier currently deterring many OEMs and telematics companies from sharing vehicle 
data. Privacy concerns pose a risk of leading authorities to use inadequate, second-best data sources 
whose likely biases lead to wrong conclusions. 

It is important to bear in mind that there are multiple ways to aggregate vehicle data, primarily (a) by road 
segment/by area across many vehicles and (b) by driver/by vehicle across many road segments. 
Aggregating driver behaviour over a segment of roadway across many vehicles can resolve privacy issues 
as it is one way to eliminate personal identifiable information and unlock data sharing perspectives. It 
would thus be possible to produce data on traffic volume, speed, speed percentiles, ABS/ESP/AEB 
engagements, etc. over a whole week or month. Roundtable participants called for the adoption of such 
“privacy by design”. 

Aggregation, however, destroys some information. For instance, it makes it difficult to investigate any 
possible bias in the data. Having a specific use case in mind is important before performing data 
aggregation. 

To address businesses’ fear that data sharing will result in lawsuits on privacy grounds, legislators should 
review the current liability regime. Some participants called for a Good Samaritan approach that 
encourages data sharing, especially in cases where the data is not monetised. 
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Governments should follow simple data governance principles, such as purpose specificity and data 
minimisation, and comply with privacy protection regulation. Location and trajectory data are the most 
vulnerable, so they should be covered by the most robust protection methods (ITF, 2021). 

Finally, it must be acknowledged that digital security is fundamental to privacy protection. To promote 
greater uptake and potential for data sharing, governments should continue elaborating digital security 
policies. 

Commercial sensitivity 

Drivers and operators of commercial fleets may be reluctant to share telematics data for fear that, in a 
highly competitive market, commercially sensitive information could be mined from the data. Lifting this 
barrier could require awareness-raising messages about AI’s use in traffic safety and transparency about 
who precisely will have access to the data. Telematics companies themselves fear for their intellectual 
property, worrying that their algorithms could be reverse engineered, for instance. Ownership of the 
intellectual property represented by the data exchanged in the SRTI ecosystem remains an open issue, 
several experts said. 

Partners in any data exchange may fear that their data are ultimately misused, that the other party is not 
following the licence terms limiting use of the data. Among innovations to enforce data licences, the 
International Data Spaces (IDS) initiative aims at data sovereignty and interoperability. By specifying data 
use constraints, it defines the terms and conditions for the data economy. By describing an open software 
architecture and publishing open source software codes, it ensures maximum adoption. The IDS 
Association has more than 110 members from more than 20 countries (IDSA, 2020). 

Open government 

Many countries adopted legislation allowing public access to government-held data. They are known as 
freedom of information acts, access to information acts or open records legislation and apply to any data 
set that a government owns. Such open-ended access to data containing private citizen information can 
represent a major hurdle to data use for policy making. 

Through a freedom of information act request, the New York City Taxi & Limousine Commission’s entire 
trip records data set became public, potentially supporting any number of research projects related to 
transport planning. But, although anonymised, this data set could be matched with auxiliary data sets to 
reveal the likely religion of particular cab drivers, which rides celebrities took and the likely identity of 
individuals frequenting strip clubs. This shows that anonymisation is not always meaningfully protective or 
may not be technically viable in ordinary circumstances (Accenture, 2016). 

Freedom of information regulations create two kinds of disincentives or barriers to data use by 
government agencies: 

 They are a disincentive to the use of data sets containing personal identifiable information, since 
open access to such information would make government liable for privacy breach. 

 They would be a barrier to government purchases of data, since data suppliers may refuse to let 
their data sets become public. 

Both issues could be somewhat addressed by procurement of dashboards or query-based “safe answer” 
solutions whereby government procures only insights and neither owns nor hosts any data. In the Data for 
Road Safety initiative (Box 7), the DFRS ecosystem for SRTI exchange includes a multiparty agreement 
barring governments from turning vehicle-generated raw data into open data (Data Task Force, 2020).  
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Accurate risk prediction and guidance for  

proactive road network safety management 

AI models could outperform traditional risk prediction models, coping with more input variables and 
discovering unexpected interactions between variables that enhance their predictive power. Will the right 
conditions be in place for this prospect to be realised? Will AI models be sufficiently transparent to be 
trusted? Will they deliver actionable insights? The answers to these questions will determine AI models’ 
acceptance and adoption by road authorities. 

Real-time applications 

Real-time risk prediction models provide frequent updates (every minute to every week, depending on the 
system specifications) on high-risk locations. These alerts result in traffic management responses such as 
lowering of dynamic speed limits, a heightened or more visible police presence, treatment of a slippery 
road surface or reinforced surveillance by a control centre. On the other hand, non-real-time models can 
deliver a map of the permanent high-risk locations a road authority must investigate as part of a road 
safety audit. 

Slippery road alerts are one example of real-time risk prediction. Other examples are the pilot projects 
described in Box 8, part of the US Department of Transport’s Safety Data Initiative (SDI). 

Volvo shares a continuous stream of slippery roads alerts and hazard warnings from its connected vehicles 
in Europe and North America through its Connected Safety function. Customers include the Swedish Road 
Authority and an AI-based traffic management company called Waycare. Other OEMs also share and 
monetise data, e.g. on hard braking events; no OEM is known for not doing so. 

The rest of this report explores the questions of accuracy and biases, explainability and acceptance 
applicable to all AI-based risk prediction models, whether they run in real time or not. 

Accuracy and biases 

Data-driven approaches are highly dependent on domain knowledge, i.e. an understanding of the 
particularities of an industrial sector or other area of activity. For traffic safety, domain knowledge can 
describe the combination of system failures that leads to a crash. The understanding of such failures helps 
in selecting relevant data sets and the most appropriate algorithms (ITF, 2021). 

AI benefits from domain knowledge, such as an understanding of crash contributing factors, in the 
selection of input variables. The deepest possible understanding of the root causes of crashes is what in-
depth crash investigation programs seek to deliver. 
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Box 8. US Safety Data Initiative 

Led by the US Department of Transport (USDOT) since 2017, the Safety Data Initiative takes advantage of 
the advent of big data and powerful analytics to provide actionable road safety insights. It involves a 
number of federal agencies, US states, local governments, private sector bodies and non-governmental 
organisations. Two pilot projects under the SDI illustrate the value of AI in crash risk prediction and 
mapping: 

 The USDOT’s Volpe National Transportation Systems Center employed machine learning 
techniques to estimate crash risk by combining crowdsourced crash data from Waze with crash 
history. This helped the state of Tennessee predict crash risk in one-hour time blocks on a one-
square-mile grid. The Tennessee Highway Patrol used the model’s output in prioritizing patrol 
locations. 

 The University of Central Florida delivered real-time crash risk visualisations, with predictive 
analytics and real-time traffic safety diagnostics, through a tool using AI to suggest real-time 
interventions and long-term countermeasures to decision makers and operators and to inform the 
public of ZIP code-level safety conditions. 

In 2020, the USDOT awarded over USD 3 million in funding to SDI projects, including the following: 

 The North Carolina Department of Transportation will develop an AI tool for automated analysis of 
existing video log data that would extract roadside hazards – e.g. trees, embankments, steep 
slopes – on all rural roads in the state to help identify roadway segments in need of infrastructure 
safety improvements. 

 The Massachusetts Department of Transportation will expand an existing crash data portal to help 
transport practitioners identify higher-risk roadways and risk factors so as to target roadway safety 
improvements and develop publicly available analytic tools and data visualizations. 

The next step for the SDI is to expand the range of data sources supplied by the private sector. Data types 
will include satellite and street view imagery, on-board vehicle sensor data, road user movements and land 
use attributes. 

Source: USDOT Volpe (2019), USDOT (2020). 

Biases in Artificial Intelligence 

Road authorities’ adoption of data-driven approaches arguably increases objectivity, equity and fairness. 
Hence AI could make tasks such as infrastructure maintenance and network safety management more 
effective. Used inappropriately, however, AI technology could produce misleading results. AI algorithms 
are not generally biased, but they can unintentionally perpetuate biases if the source data are biased (ITF, 
2021). 

Excessive reliance on motor vehicle fleet data may result in biases, such as analysts neglecting road safety 
problems affecting people walking and cycling. The solution is to collect data from a wide range of devices, 
including shared bikes, personal bikes, e-scooters, phones and wearables. For instance, connected 
equipment such as motion sensing bike lights would allow collection of data from personal bicycles (ITF, 
2019). Wearables would permit collection of pedestrian exposure, crash and fall data. It should also be 
recalled, however, that only the more tech-savvy members of the population use such devices, leading to 
further biases that need to be corrected. 
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Computer vision is another technology with biases that must be identified and removed. There may be 
racial and gender biases in AI, either accidental or due to AI reproducing biases already present in society. 

Lack of data on crashes and road safety interventions 

Whether AI-based or using more traditional statistical methods, crash risk prediction modelling takes more 
than just road and traffic attributes as input data. It also requires accurate crash data and a record of road 
safety countermeasures and when they were deployed. Crash data are often under-reported and 
inaccurate. The use of incomplete crash data could lead to AI perpetuating existing biases to the detriment 
of neglected areas or populations. Thus collection of good quality crash data is of the utmost importance. 

Solutions to improve crash data completeness and accuracy were discussed in ITF (2019). Improving the 
quality of police and health records is important, as is occasional or permanent linkage of data from the 
transport and health spheres. Self-reported traffic injury surveys can also complement other data sets. 
Governments should use such solutions in ensuring the completeness and precision of their crash data – 
especially on crashes resulting in serious and fatal injuries – and publish this information as micro-level 
open data. 

One difficulty in setting up risk prediction tools is that high-risk locations often receive safety treatment 
investments soon after diagnostic data reveal the problem. An accurate log of road safety 
countermeasures is needed, including indications of policing, targeted education campaigns, engineering 
solutions, etc. This is particularly challenging. 

Calibration/training 

Model calibration is not a one-off effort but an iterative process. Even in the case of non-real-time 
prediction tools, model developers should continually collect new data and assess whether the prediction 
power holds or could be improved through new model training. Behaviours differ in different parts of the 
world. Will explanatory factors found in one region apply to another region? Developers of risk prediction 
tools should constantly seek to verify their predictions’ accuracy against recent and local data, and retrain 
their models when needed. As the UNECE (2020) ML project report emphasised, ML must be maintained 
to improve as it continues to learn (Figure 4). 

Models may not be transferable between regions due to factors including behaviour differences and 
inconsistent input data. Training of data scientists around the world needs to take these factors into 
account. 

Ideally, models should be update and retrained frequently and locally. Under the Safe System approach, 
the road safety community focuses on predicting and preventing fatal and serious crashes, which 
represent a minority of crashes and may not follow the same pattern as other crashes. Training a model 
requires a large number of events, yet fatal and serious crashes are relatively infrequent. Hence the spatial 
and temporal granularity of risk prediction modelling is limited. This simple statistical barrier is one of the 
most challenging technical aspects of risk prediction modelling. 

Like weather models, risk prediction models may disagree, in which case taking the average output across 
several models can help. Each individual data set or algorithm has shortcomings, so it is usually better to 
use several. To prevent overfitting, Amazon Web Services proposes tools that develop several rough AI 
models and then take an average of the result of, say, 100 such models. 
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Performance 

Will AI outperform classic models? With a given set of input variables, ML rarely outperforms traditional 
modelling by an extent that justifies the added complexity and lower transparency. However, ML can cope 
with more input variables and could significantly push the boundaries of crash risk prediction. 

There is a risk of misusing AI models if trust is placed blindly in their abilities. Governments should 
commission robust evaluations of the benefits delivered by new tools and adjust trust levels accordingly 
to safeguard against assumed accomplishments. At some locations, models will make predictions that are 
far off recent crash numbers. An example is a location where several fatal crashes occurred within three 
years but a crash prediction model finds it to be perfectly safe. Without the most robust benchmarking of 
model performance, road authorities would lose trust in predictive safety. 

Conversely, not using AI models due to lack of trust represents a missed opportunity. The road safety 
community should communicate clearly on new techniques’ performance. To this end, governments, 
universities, industry and other stakeholders should organise or support competitions to benchmark crash 
prediction models’ performance. In such events, teams of researchers compete to develop the best 
prediction model using the same input data and prediction scope. The HERE data marketplace organises 

AI competitions powered by the road traffic data available on its platform.7 Competitions or benchmark 
efforts should always verify whether a model performs better than a simple extrapolation from observed 
crash numbers. 

Explainable models for diagnostic and guidance 

The strength of AI in crash prediction is its discovery of patterns the human eye would have missed, 
especially when combining many seemingly unrelated variables. But surprising and counterintuitive 
patterns call for sanity checks. A consensus emerged from the roundtable in favour of human supervision 
by data scientists, statisticians and road safety experts. 

Experts noted that both AI and classic models sometimes associate crash risk “wrongly” with variables that 
may not pose any crash risk themselves but are influenced by missing data that would best represent the 
root causes of crash risk. 

The conceptual framework, methodology and protocol for AI must be carefully defined to deliver 
meaningful results. AI can only identify the root causes of crash risk if it recognises the right variables of 
problematic patterns. These data are crucial to predicting possible causes of crash risk (e.g. behaviour, 
road design). AI has many other areas of application besides traffic safety, so it should be possible to 
transfer knowledge from other sectors. 

An inadequate choice of input variables, together with a rapid interpretation with insufficient domain 
knowledge, could have dangerous consequences. For instance, due to confounding factors, a model could 
identify urban congestion as the root cause of crashes and recommend road widening as the cure, a policy 
known to in fact cause more motor vehicle traffic and greater crash risk over the whole city. This is an 
example of how AI could mislead authorities if used blindly. The problem often lies in hidden correlations 
between variables and the opportunistic choice of variables that do not capture root causes. In short, 
having some data is not enough: the devil is in the details. 

Government officials are unlikely to be trained to detect weaknesses in predictive risk analysis and may 
not question results, especially if the conclusion goes in a politically practical way. Domain experts need to 
deliver sanity checks based on decades of established knowledge. 
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The most appreciated risk prediction models are those that explain why a given location is flagged as risky 
and suggest how to resolve the problem. Traditional modelling – with techniques such as regressions and 
generalised linear modelling – is considered stronger than AI in this area. But that is about to change as 
explainable AI models become available. 

Explainability/interpretability 

Although AI will probably do a lot to help identify dangerous locations, the lack of explainability that often 
characterises AI techniques could impede their acceptance and use. Modellers often hesitate to use an 
artificial neural network (ANN), a popular ML method, because it is hard to explain the results and how 
they were arrived at. It is indeed difficult to determine whether a trained ANN has learned intuitively 
reasonable relationships or ones that are spurious, inexplicable or otherwise undesirable. Choice 
modellers thus often find it hard to trust even an ANN whose predictive performance is strong (Alwosheel, 
van Cranenburgh and Chorus, 2019). 

Many argue that ML should have no role in life and death decisions. Interpretable models, transparently 
relating source information with model outcome, seem to be the preferred choice when it comes to such 
decisions. Black box machine learning models are nevertheless used for high-stakes decision making 
throughout society, in healthcare, criminal justice and other domains. Some methods for explaining black 
box models to make them more transparent have been developed, yet for Rudin (2019), trying to explain 
black boxes, rather than creating models that are interpretable in the first place, is likely to perpetuate bad 
practice and could cause great harm to society. Rudin recommends instead designing models that are 
inherently interpretable. 

There are ways to help derive meaning and explanations from AI models, or at least to diagnose them and 
check whether they have learned intuitive relations. Alwosheel, van Cranenburgh and Chorus (2019) 
propose a method involving synthesising prototypical examples that expose the fundamental relationships 
the model has learned. An analyst can then evaluate these to see whether they make sense and are 
desirable or not. In the context of crash risk prediction, a prototypical example might be the introduction 
of a lower speed limit. 

Table 2. Strengths and weaknesses of classic and AI models 

Strengths and weaknesses Classic models AI models 

Expose coefficients Yes No 

Expose the decision process for the inclusion or exclusion of variables Yes No 

Allow for interrogation Yes Rarely 

Find the best fit Rarely Yes 

Allow for more input variables and interaction between input variables Rarely Yes 

Could assign effects “wrongly” to variables that are collinear or co/inter-
dependent with missing variables 

Yes Yes 

Source: Based on Agilysis (2020). 

Experts noted that explainable AI, or XAI, is becoming more popular and accessible. It bridges the gap 
between the most accurate (but obscure) AI models and classic models that are more easily interpreted. 

Unless AI models become explainable, they are unlikely to be trusted to assist in decision making. 
Considering the huge benefits these new techniques could offer, however, it is important for society to 
persist in producing such models, scrutinising them in detail and learning their limitations, rather than 
simply sticking with familiar techniques because of the challenges AI poses. 



ARTIFICIAL INTELLIGENCE IN PROACTIVE ROAD INFRASTRUCTURE SAFETY MANAGEMENT  |  SUMMARY  |  ITF ROUNDTABLE 187 

30 © OECD/ITF 2021 

Acceptance and adoption by road authorities 

Despite the growing emphasis on tackling risky behaviours and adopting a proactive approach to road 
safety, most elected officials continue giving priority to reactive treatment of crash hotspots. They have 
little faith in black box solutions for risk mapping. To foster a new vision, road safety professionals should 
build trust in risk mapping and risk prediction tools. A good way to build trust in a model would be to 
identify crash risks that experts did not foresee but later acknowledged as real. Models can also identify 
crash risks that residents have identified but that no crash data had yet revealed. Attractive, legible and 
colourful maps can work well for policy makers and constituents in such efforts. 

AI needs to show a substantial improvement over statistical models, and a significant level of 
interpretability, before governments will widely use it for road safety applications. Some experts consider 
established techniques, such as crash modification factors or functions (Box 5), to be both robust and 
geographically transposable enough to negate the need for AI. Others argue that a given action or measure 
can have different safety effects in different countries (ITF, 2012). 

Figure 4. Acceptance and facilitation of machine learning for official statistics 

 

Source: UNECE (2020). 

Overcoming obstacles to acceptance 

Roundtable participants observed that governments do not always follow the conclusions of road safety 
audits and star-rating programmes. AI is unlikely to lead to increased commitment to road safety. Road 
authorities will be reluctant to invest in AI if unsure of the return on this investment. The road safety 
community needs to assess the number of casualties a proactive approach will avoid and reassure decision 
makers of the value of their investment. For example, iRAP computes the predicted economic benefit of a 
road safety intervention. Integration of such business case information into operational road management 
systems is the next step forward. It would supplement one-off political decisions with a more reliable 
maintenance and investment programme. 

Will authorities have the resources to act on these new crash predictions? Can they redouble their efforts, 
fixing not only crash hotspots, as they used, to but also predicted hotspots? Awareness of proactive safety 
management tools is a necessary but not sufficient condition for successful implementation of 
infrastructure-oriented safety measures. Procedures that are not obligatory are easily skipped to save time 
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and money. Some road authorities reject risk prediction modelling for fear of the legal liability that could 
result from knowing the location of high risk road segments and not acting in time. ITF (2015) therefore 
recommends making road infrastructure safety management compulsory. The European Commission, for 
instance, requires roads of the Trans-European network to undergo regular road safety inspections. 

Some authorities refuse to share even aggregated crash data on data protection grounds. One case 
mentioned at the roundtable involved an authority maintaining that a collision’s exact time and place could 
not be disclosed, to preserve privacy. Participants concluded that policy makers should clarify regulatory 
frameworks on how to anonymise and aggregate data. 

Software availability is not seen as the main challenge in developing AI solutions for crash risk prediction. 
Tools already exist in statistical software and cloud services for the calibration and use of AI models. These 
may not make AI models as accessible as spreadsheet models, but go some way towards closing the gap. 

Skills 

Predicting road injury risk requires both quality data and professional skills. Data scientists should join 
forces with subject matter experts for appropriate interpretation of often complex and incomplete data 
sets. Data without context rarely provide much information. 

Smaller government agencies have limited resources, and their staffs are spread thin across many public 
issues. That is why local governments often rely on university students to analyse data. Government needs 
a simple and intuitive way to access essential data sets. VIA in the Netherlands has developed standardised 
software to help municipalities get access to speeding data. 

Because governments’ analytical capabilities are limited, civil society’s capacity to mine relevant data and 
deliver insights should not be neglected. Opening up government data, including crash data and a log of 
countermeasures, can deliver tremendous benefits by facilitating civil society research efforts.
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Notes

1  In a previous ITF workshop, industry experts said telematics in professional vehicle fleets were easier to use in countries with lower levels 
of privacy protection regulations. For instance, the capture of video images inside truck cabins is developing in Africa.  
See http://www.itf-oecd.org/sites/default/files/docs/new-directions-data-driven-transport-safety_0.pdf. 

2  See https://www.lytx.com/en-us/    

3  See https://www.who.int/violence_injury_prevention/road_traffic/12GlobalRoadSafetyTargets.pdf 

4  See https://www.mobileye.com/uk/fleets/blog/barcelona-introduces-mobileye-city-streets/ 

5  See https://covesa.github.io/vehicle_signal_specification/introduction/ 

6  See https://sensoris.org/objectives/ 

7  See https://www.globenewswire.com/news-release/2020/06/04/2043438/0/en/Traffic4cast-competition-calls-on-AI-community-to- 
better-predict-urban-traffic-flows.html 
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https://www.who.int/violence_injury_prevention/road_traffic/12GlobalRoadSafetyTargets.pdf
https://www.mobileye.com/uk/fleets/blog/barcelona-introduces-mobileye-city-streets/
https://covesa.github.io/vehicle_signal_specification/introduction/
https://sensoris.org/objectives/
https://www.globenewswire.com/news-release/2020/06/04/2043438/0/en/Traffic4cast-competition-calls-on-AI-community-to-%20better-predict-urban-traffic-flows.html
https://www.globenewswire.com/news-release/2020/06/04/2043438/0/en/Traffic4cast-competition-calls-on-AI-community-to-%20better-predict-urban-traffic-flows.html
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This report examines and determines the most relevant cases 
for artificial intelligence (AI) use in a transport planning context 
for crash prevention on an entire road network. It explores the 
possibility of using computer vision to acquire relevant information 
and the capability of computer models to map high-risk locations. 
It offers recommendations to stakeholders on the development and 
appropriate use of life-saving AI solutions.
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