AUSTRALIA

Based on provisional data, Australia recorded 1 143 road fatalities in 2018, representing a 6.7% year-on-year decrease. After two years of increases in road fatalities in 2015 and 2016, 2018 data point to a trend reversal with a second consecutive contraction in the number of annual road fatalities. Australian progress towards the target established under the National Road Safety Strategy (NRSS) 2011-2020 (at least 30% reductions in fatalities and serious injuries) has been slower than anticipated, in part as a result of the increases in total road fatalities in 2015 and 2016. An independent inquiry into the effectiveness of the NRSS was completed in 2018 and all levels of government are working to implement the findings. The Australian Government has recently established a new Office of Road Safety in the Department of Infrastructure, Transport, Cities and Regional Development. The Office of Road Safety commenced operations on 1 July 2019, and will deliver the Government’s new and existing road safety programs, engage with road safety stakeholders, and take on responsibility for performance monitoring and reporting on the National Road Safety Strategy, as well as leading the preparation of the post 2021 national strategy.

Trends

Australia registered an overall decrease in the number of road deaths in 2018. According to the latest provisional data, 1 143 persons lost their lives in traffic crashes in Australia in 2018. This represents a 6.7% decline on 2017. In 2017, for which validated data is available, 1 225 road deaths were reported, itself a 5.3% decrease on 2016.

The longer-term trend for road deaths in Australia continues to be downwards trending. Between 2000 and 2018, the number of annual road fatalities fell by 37%. The year 2018 shows a second consecutive year of decrease in traffic fatalities after two previous years of increases in 2015 and 2016.

The number of traffic deaths per 100 000 inhabitants in Australia has fallen by 52% between 2000 and 2018. In 2018, 4.6 traffic deaths per 100 000 inhabitants were recorded, compared to 9.5 in 2000. By way of comparison the average in the European Union is 4.9 deaths per 100 000 inhabitants in 2018.
Measured as traffic deaths per billion vehicle-kilometres (vkm) driven, the road safety performance of Australia shows an encouraging long-term trend. In 2018 this metric stood at 4.3, a decrease of 56% from 2000.

Australia recorded 0.6 road fatalities per 10 000 registered vehicles in 2018. This represents a more than halving (-59%) of the year 2000’s figure, when the rate of deaths to registered vehicles stood at 1.5.

Figure 1. Road safety, vehicle stock, traffic and GDP trends

Index 2000 = 100

The data for fatalities by road user groups show that passenger car occupants continue to comprise the greatest share of road fatalities. In 2017, passenger car occupants were once again a plurality with 48% of the total fatalities. They were followed by users of motorised two-wheelers at 17%, pedestrians at 14%, and cyclists at 3% of total fatalities.

Cyclists experienced the largest yearly increase in fatalities (30%) in 2017, increasing from 30 to 39 deaths on the year. Users of motorised two-wheelers registered a decrease of 15% in fatalities from the year prior. Likewise, pedestrians and passenger car occupants experienced year-on-year decreases of 8.2% and 2.5%, respectively.

The long-term trend shows that traffic in Australia has grown safer for some, but not all, road user groups. Namely, the number of fatalities occurring to motorised two-wheelers increased from 191 to 212 in the period 2000-2017 representing an increase of 11%, while the number of annual fatalities occurring to cyclists failed to show significant, consistent decreases stagnating around 35 during the same time period. Pedestrians and passenger car occupants saw road fatalities decrease by 41.8% and 54.5%, respectively, during this time period.
Figure 2. Road fatalities by road user group in percentage of total, 2017

Road deaths by age group in 2018 show a significant decrease for persons aged over 75 (-28.6%) compared to 2017. Despite this, these elderly seniors remain at highest risk in traffic with a mortality rate of 11.1 deaths per 100,000 inhabitants in the same age group, i.e. more than twice the mortality rate of the average population.

The long-term trend, since 2000, is encouraging. All age groups registered a decrease in the number of annual road deaths. The strongest reductions occurred for youths aged 0-20 who collectively registered 264 fewer deaths (-63%) in this time period.

The perspective changes slightly for the elderly when changes since 2010 are considered. From 2010-2018, Australians aged 65-74 saw the number of annual road fatalities rise by 18.8% while those above 75 saw an uptick of 6.6%.

Despite recent improvements, young people continue to have a mortality rate significantly above the average. In 2017, 18-20 year olds and 21-24 year olds recorded road mortality rates of 9.7 and 8.0 per 100,000 persons, respectively.
Analysis of fatalities by road type in Australia shows that in 2018 48% of road deaths occurred outside urban areas. This repartition has remained relatively stable in recent years.

In 2018, the number of road deaths decreased by 27% on urban roads and 13% on non-urban roads compared with 2017. Since 2008, fatalities in urban areas have been reduced at a significantly faster rate (a decrease of 43%) than fatalities in non-urban areas (a decrease of 19%).
An overview of the evolution of road deaths by currently available data categories lends striking results for Australia. Across the board, road deaths have decreased save for two categories: cyclists and the elderly. The number of cycling fatalities has remained stable since 2010, while the number of road fatalities accorded to the elderly has significantly increased.

Fatality data are essential to understanding road safety issues, but hardly sufficient. Information on serious injuries from crashes is also critically important. Yet injury data are much more difficult to obtain, validate and - where available - compare. Although the NRSS established a 30% reduction target for serious injuries as well as fatalities, Australia does not yet have systems in place at the national level to reliably
measure serious, non-fatal injuries from road crashes, due to jurisdictional differences in injury definitions and reporting arrangements.

The National Road Safety Action Plan 2018-2020 seeks to address this by establishing a national matched injuries series using a commonly accepted “serious injury” definition. The Australian Government and state and territory governments, in conjunction with Austroads, are tasked with the responsibility of bringing the data series to fruition, and strong progress has been made. An initial report published in March 2019 documents the first stage of the pilot project, in which the 2014 crash, hospital, and National Death Index data for five jurisdictions were successfully linked.

Road injuries that result in hospitalisation are recorded using the National Hospital Morbidity Database operated by the Australian Institute of Health and Welfare. In 2016, the latest year for which figures are available, 38,945 road related hospitalised injuries were recorded in Australia. See a summary of the traffic hospitalised injury series at: https://www.bitre.gov.au/publications/ongoing/files/Hospitalised_Injury_Publication_April_2019.xlsm.

More information on this topic can be found via the following links: https://www.roadsafety.gov.au/performance/serious-injuries.aspx.

Economic costs of road crashes

The annual economic cost of road crashes in Australia is an estimated AUD 27 billion per year, based on 2006 data. This estimate is equivalent to 1.8% of national GDP in 2012-13. A willingness-to-pay methodology was used to value the human losses from road crashes.

The estimated cost includes non-reported crashes and injuries.

<table>
<thead>
<tr>
<th>Table 1. Costs of road crashes, 2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total [AUD]</td>
</tr>
<tr>
<td>Fatalities</td>
</tr>
<tr>
<td>Injury and disability</td>
</tr>
<tr>
<td>Property damage and other costs</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>Total as % of GDP</td>
</tr>
</tbody>
</table>

Behaviour

The behaviour of road users is an important determinant of a country’s road safety performance. Australia does not have reliable national data on the contribution of speed to serious crashes. Police crash reports have suggested that excessive speed is a factor in about a third of all fatal crashes, though this is likely to be underestimated.
Statistical series and other evaluation studies in individual jurisdictions indicate that speed management measures have made an important contribution to reducing road fatalities and injuries. Between 1997 and 2003, all Australian jurisdictions, with the exception of the Northern Territory, lowered their urban default speed limit from 60 km/h to 50 km/h. The evaluation study done in New South Wales showed that the mean speed decreased by 0.5 km/h, while the total number of crashes decreased by 25.3% and the number of persons injured by 22.3% (ITF/OECD, 2018).

National data on speed distributions are not available. Obtaining such data has been identified as a priority to support the effective monitoring of progress under the National Road Safety Strategy.

Under Australia’s National Road Safety Strategy, there have been moves to better align posted speed limits with the objective risk profiles of roads. This has led, for example, to an expansion of lower urban speed zones (typically 40 km/h) in areas with high pedestrian and cycling activity. The National Road Safety Action Plan 2018-2020 stressed the importance of reviewing speed limits on high-risk regional and remote roads.

Over the last 10 years, most Australian jurisdictions have taken steps to strengthen speed enforcement programmes, particularly through increased use of mobile and fixed cameras; in recent years several jurisdictions have introduced, or planned to introduce, point to point camera systems to measure average speed, though generally only on a modest scale.

The National Road Safety Action Plan recommended increasing the deployment of point to point and mobile cameras to detect speed in all jurisdictions. It also set as a critical action the development of a national speed enforcement strategy and a greater use of technology for a range of enforcement outcomes.

The table below summarises the main speed limits in Australia. It should be noted that speed limits are state-based, but there is broad consistency across jurisdictions.

<table>
<thead>
<tr>
<th>General speed limit</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban roads (not arterial)</td>
<td>50 km/h</td>
</tr>
<tr>
<td>Urban roads (arterial)</td>
<td>60-80 km/h</td>
</tr>
<tr>
<td>Rural roads (undivided)</td>
<td>100 km/h</td>
</tr>
<tr>
<td>Rural roads (divided)</td>
<td>100-110 km/h</td>
</tr>
<tr>
<td>Motorways</td>
<td>100 km/h</td>
</tr>
</tbody>
</table>

Driving under the influence of alcohol is another major cause of road crashes in Australia, as in most IRTAD countries. In 2017, the available data (from only six of the eight jurisdictions) shows that 150 people were killed in alcohol related crashes. This is 29.9% fewer than in 2010 when 214 fatalities were attributed to a crash involving alcohol.
consumption. These figures may underestimate the extent to which alcohol affects Australian road safety as fatality counts for these measures use lower-bound estimates due to a substantial number of cases with unknown values.

In Australia, it is illegal to drive a motor vehicle with a blood alcohol content (BAC) of 0.5 g/l or higher. Lower BAC limits apply to truck, bus and taxi drivers (typically 0.2 g/l) and to novice drivers (0.0 g/l). To define drink-driving crashes, Australia uses the same definition as the one recommended by the European Union project SafetyNet: any crash in which any active participant has a BAC level above the legal limit.

All jurisdictions have had considerable success in reducing the contribution of alcohol to road trauma, largely attributable to the combination of intensive random breath-testing programmes and ongoing public education campaigns. While absolute numbers of alcohol related fatalities have continued to decline over the past decade, the involvement of alcohol in fatalities remains significant (18.6% of fatalities where data were available).

All states and territories have mandatory alcohol interlock programs for high range drink drivers and repeat offenders, continue to review and adjust these to improve their effectiveness in addressing drink driving. They maintain highly visible random breath testing including car-based operations on the rural network, to complement larger operations elsewhere.

The confluence of drug use and driving is a concern in Australia. According to official statistics, in 2017 105 persons (18.8% of road deaths where data were available) were killed in a crash when at least one of the drivers was tested positive for drugs. It has been estimated that in 2016 the proportion of road deaths from crashes involving drug-impaired drivers or motorcycle riders increased 55% since 2012 in five jurisdictions.

As part of the National Road Safety Action Plan 2018-2020, Australia listed “increasing roadside drug testing significantly in all states and territories” as a Priority Action, and state and territory road authorities have been working together with police through a National Drug Driving Working Group to develop a national best practice approach to reducing drug driving. Individual jurisdictions are aiming for a 50% to 100% increase.

With increased reliance on and use of mobile phones and other devices, distracted driving is recognised as a concerning and potentially growing problem in Australia. However, there is no official definition as to what constitutes “distracted driving” for national statistical collection. Mobile phone use is of particular concern, with self-report surveys consistently finding that about 60% of drivers use a mobile phone while driving, and a significant minority of drivers admitting to reading (32%) or sending (18%) text messages. Data from naturalistic driving studies suggest that up to 22% of car crashes may involve distraction as a contributing factor (not specific to Australian cases) (CARRS-Q, 2017).

Across Australia it is illegal to use a hand-held phone while driving. Learner and provisional licence holders in some jurisdictions are subject to further restrictions, including a total ban on phone use while driving. Breaches attract fines and licence
demerit points. In recent years, state governments have undertaken promotional campaigns to warn of the dangers of distracted driving.

There is no definitive measure for fatigue involvement in crashes. Approximately 20% of all fatal crashes in Victoria have been estimated to involve driver fatigue, while estimates in Queensland are that sleepiness contributes to 20-30% of all deaths and serious injuries on the road. Fatigue is four times more likely to contribute to impairment than drugs or alcohol.

Seat-belt use has been compulsory in Australia since the 1970s. In most states there are licence demerit point penalties as well as fines for unbelted drivers, and in some states demerit points apply to drivers with unbelted passengers (in addition to fines for unbelted adult passengers).

Children 7 years of age and under must be seated in a rear seat (if available) and be adequately restrained in an appropriate child restraint or booster seat, taking into account their weight and height.

Objective nationwide data on use rates are not available, but non-national observational surveys and self-report data from national surveys indicate that wearing rates for both front and rear-seat occupants are now in excess of 95%.

Despite generally high wearing rates, the rate of non-use among fatally injured vehicle occupants is still estimated at 12%. Analysis indicates that this high figure is the result of a high crash involvement rate among those who do not wear belts, as well as the fact that they are more likely to be killed if involved in a crash.

Table 3. Seat belt and helmet wearing rates

<table>
<thead>
<tr>
<th></th>
<th>2000</th>
<th>2016</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front seats</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General (driver + passenger)</td>
<td>96</td>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td>Urban roads (driver)</td>
<td>..</td>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td>Rural roads (driver)</td>
<td>..</td>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td>Rear seats</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General</td>
<td>89</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>Helmet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riders of motorised two-wheelers</td>
<td>..</td>
<td>99</td>
<td>99</td>
</tr>
</tbody>
</table>

Helmets are compulsory for motorcycles and moped riders and cyclists. Approximately 1 in 12 motorcyclists and 1 in 6 cyclists killed in road crashes were not wearing a helmet. There is no national data on general helmet use rates.
Road safety management and strategies

There are several factors of influence on Australia’s road safety performance as captured by the above indicators. The number of road deaths peaked in 1970 with 3,708 reported road fatalities. Since 1970 the number of road deaths has steadily decreased with some yearly fluctuations. Improvement was particularly marked in the early 1990s. More recently, the decrease in the number of fatalities has continued but at a much slower pace.

Key measures contributing to the reduction in the number of road deaths, particularly over the last decade, have been the implementation of intensive speed compliance measures, progressive introduction of graduated licencing restrictions, targeted safety investment in road infrastructure and continuous vehicle safety improvements.

In Australia’s federal system, government responsibilities for road safety vary across jurisdictions. The Australian Government is responsible for regulating safety standards for new vehicles, and for allocating infrastructure resources, including for safety, across the national highway and local road networks.

State and territory governments are responsible for funding, planning, designing and operating the road network; managing vehicle registration and driver licensing systems; and regulating and enforcing road user behavior. Local governments have responsibilities for funding, planning, designing and operating the road networks in their local areas.

The Department of Infrastructure, Transport, Cities and Regional Development has a range of functions that support the Australian Government’s role in road safety. These include administering vehicle safety standards for new vehicles, administering the National Black Spot Program and other road funding, administering the keys2drive programme, producing national road safety statistics, and coordinating the National Road Safety Strategy 2011-2020.

The Australian Government has recently established a new Office of Road Safety in the Department of Infrastructure, Transport, Cities and Regional Development. The Office of Road Safety commenced operations on 1 July 2019, and will deliver the Government’s new and existing road safety programs, engage with road safety stakeholders, and take on responsibility for performance monitoring and reporting on the National Road Safety Strategy, as well as leading the preparation of the post 2021 national strategy.

The National Road Safety Strategy (NRSS) is an initiative of the Transport and Infrastructure Council (TIC) – a body under the Council of Australian Governments comprised of Ministers responsible for transport and infrastructure issues from the Commonwealth, States, Territories, and New Zealand.

State, Territory, and Federal transport Ministers established the first National Road Safety Strategy in 1992. The subsequent 2000-2010 National Road Safety Strategy adopted the Safe System approach utilised by other OECD member states with the aim of
reducing road fatalities by 40% in the stated time period. An actual reduction in road fatalities of 34% was achieved over the period.

The National Road Safety Strategy 2011–2020 is firmly based on Safe System principles and is framed by the guiding vision that no person should be killed or seriously injured on Australia’s roads. As a step towards this long-term vision, the strategy presents a 10-year plan to reduce the annual numbers of both deaths and serious injuries on Australian roads by at least 30 per cent.

In September 2018 the Australian Government received the results of an independent inquiry into the effectiveness of the NRSS. The Government had initiated the Inquiry in response to slower than expected progress in reducing road trauma. The inquiry produced the following 12 recommendations (https://www.roadsafety.gov.au/nrss/files/NRSS_Inquiry_Factsheet_September_2018.pdf):

1. Create strong national leadership by appointing a Cabinet minister with specific multi-agency responsibility to address the hidden epidemic of road trauma including its impact on the health system.

2. Establish a national road safety entity reporting to the Cabinet minister with responsibility for road safety.

3. Commit to a minimum AUD 3 billion a year road safety fund.

4. Set a vision zero target for 2050 with an interim target of vision zero for all major capital city CBD areas, and high volume highways by 2030.

5. Establish and commit to key performance indicators in time for the next strategy that measure and report how harm can be eliminated in the system, and that are published annually.

7. Implement rapid development and accelerated uptake of proven vehicle safety technologies and innovation.

8. Accelerate the adoption of speed management initiatives that support harm elimination.

9. Invest in road safety focused infrastructure, safe system and mobility partnerships with state, territory and local governments that accelerate the elimination of high risk roads.

10. Make road safety a genuine part of business as usual with Commonwealth, state, territory and local government.

11. Resource key road safety innovation initiatives.
12. Implement life-saving partnerships with countries in the Indo-Pacific and globally as appropriate to reduce road trauma.

Working with all levels of government, the Australian Government has undertaken a national road safety governance review, with the results to be considered by the Transport and Infrastructure Council in August 2019. The review maps out roles, responsibilities and accountabilities held across agencies and makes recommendations on the changes necessary to improve Australia’s road safety governance structure in order to support the effective design and delivery of interventions to deliver safe roads. The Government has already established the Office of Road Safety to deliver its road safety programs and take a national leadership role in road safety. More information can be found at: https://www.roadsafety.gov.au/nrss/files/TOR-2019-Governance-Review.pdf.

The primary measure of success for the 10-year strategy is determined by the actual reduction in the numbers of deaths and serious injuries from road crashes. Intermediate progress is assessed annually using the high level outcome indicators established when the strategy commenced, as well as the Safety Performance Indicators (SPIs) that have been developed for detailed progress monitoring. These indicators include rate of road fatalities per population, per motor vehicle and per distance travelled. Development of additional SPIs and associated data collection arrangements will continue.

Figure 7. Trends in road fatalities towards national target

Measures

In Australia’s federal system, all levels of government implement a range of measures to reduce deaths and serious injuries, within their specific areas of responsibility. The National Road Safety Action Plan 2018-2020 contains nine Priority Actions across the Safe System that all jurisdictions have agreed must be implemented and will assist to meet the NRSS targets for road trauma reduction. The Action Plan also identifies a series of Other Critical Actions representing either extensions of existing national efforts or
supporting actions that are important to continue in addition to the key national priority list.

1. Review speed limits on high risk regional and remote roads, in consultation with the community.

2. Target infrastructure funding towards safety-focused initiatives to reduce trauma on regional roads.

3. Implement safety treatments to reduce trauma from crashes at urban intersections.

4. Increase deployment of Autonomous Emergency Braking (AEB) in both heavy and light vehicles.

5. Increase roadside drug testing significantly in all states and territories.

6. Reduce speed limits to 40 km/h or lower in pedestrian and cyclist places.

7. Increase deployment of point-to-point and mobile cameras to achieve safe travel on Australia’s road network.

8. Improve heavy vehicle safety through improvements to licensing arrangements and fatigue laws.

9. Increase the market uptake of safer new and used vehicles and emerging vehicle technologies with high safety benefits.

In response to the recommendations of the 2018 NRSS Inquiry, a national road safety Governance Review has been completed and the Australian Government is working with the states and territories to implement several of the recommendations with the development of an Implementation Plan.

Definitions, methodology, data collection

- Road fatality: a person who died immediately or within 30 days of a crash.

- Seriously/slightly injured: Australia does not have systems in place to reliably measure national indicators of injuries from road crashes, in part due to jurisdictional differences in injury definitions and reporting arrangements.

- The current agreed definition of a serious injury for national reporting is confirmed admitted to hospital, irrespective of length of stay or medical severity rating.

A national pilot project undertaken to link hospital and crash datasets successfully completed in April 2019, with a second stage underway to extend linkage to all
jurisdictions and produce historical linked series. This second stage will provide base line data for the next National Road Safety Strategy and inform future consideration of a national definition of what constitutes a serious injury. Following completion of this second stage in mid-2020, the establishment of an ongoing monitoring process may then become possible.

In Australia, crash data are collected and validated by the police and transport agencies in each of the eight states and territories.

A national crash database of casualty crashes, managed by the federal Department of Infrastructure and Regional Development (hereafter referred as the Department), is used for reporting against the National Road Safety Strategy 2011-2020 fatality targets. This database is the source of the fatality data included in this report. It is not possible to use this database for national reporting of injury road crash data as there are substantial differences in the injury definitions adopted by the Australian states and territories.

Resources

Recent research

Websites

Bureau of Infrastructure, Transport and Regional Economics: https://bitre.gov.au/

Monash University Accident Research Centre: https://www.monash.edu/muarc/research/research-areas/transport-safety

References

Road safety and traffic data

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reported safety data</td>
<td></td>
</tr>
<tr>
<td>Fatalities</td>
<td>2 331</td>
<td>1 817</td>
<td>1 350</td>
<td>1 294</td>
<td>1 225</td>
<td>1 145</td>
<td>-5.3%</td>
<td>-9.3%</td>
<td>-32.6%</td>
<td>-47.4%</td>
<td></td>
</tr>
<tr>
<td>Injured persons hospitalised</td>
<td>25 008</td>
<td>26 963</td>
<td>32 775</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>Deaths per 100,000 population</td>
<td>13.7</td>
<td>9.5</td>
<td>6.1</td>
<td>5.3</td>
<td>5.0</td>
<td>4.6</td>
<td>-6.9%</td>
<td>-18.7%</td>
<td>-47.9%</td>
<td>-63.5%</td>
<td></td>
</tr>
<tr>
<td>Deaths per 10,000 registered vehicles</td>
<td>2.3</td>
<td>1.5</td>
<td>0.8</td>
<td>0.7</td>
<td>0.7</td>
<td>0.6</td>
<td>-7.3%</td>
<td>-22.4%</td>
<td>-55.6%</td>
<td>-71.8%</td>
<td></td>
</tr>
<tr>
<td>Deaths per billion vehicle kilometres</td>
<td>14.4</td>
<td>9.8</td>
<td>5.9</td>
<td>5.1</td>
<td>4.7</td>
<td>4.3</td>
<td>-7.3%</td>
<td>-20.2%</td>
<td>-52.2%</td>
<td>-67.2%</td>
<td></td>
</tr>
<tr>
<td>Fatalities by road user</td>
<td></td>
</tr>
<tr>
<td>Pedestrians</td>
<td>420</td>
<td>287</td>
<td>172</td>
<td>182</td>
<td>167</td>
<td>...</td>
<td>-8.2%</td>
<td>-2.9%</td>
<td>-41.8%</td>
<td>-60.2%</td>
<td></td>
</tr>
<tr>
<td>Cyclists</td>
<td>80</td>
<td>31</td>
<td>38</td>
<td>30</td>
<td>39</td>
<td>...</td>
<td>30.0%</td>
<td>2.6%</td>
<td>25.8%</td>
<td>-51.3%</td>
<td></td>
</tr>
<tr>
<td>Riders of motorised two-wheelers</td>
<td>262</td>
<td>191</td>
<td>224</td>
<td>251</td>
<td>212</td>
<td>...</td>
<td>-15.5%</td>
<td>-5.4%</td>
<td>11.0%</td>
<td>-19.1%</td>
<td></td>
</tr>
<tr>
<td>Passenger car occupants</td>
<td>...</td>
<td>...</td>
<td>729</td>
<td>608</td>
<td>593</td>
<td>...</td>
<td>-2.5%</td>
<td>-18.7%</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>Other road users</td>
<td>1 569</td>
<td>1 308</td>
<td>187</td>
<td>223</td>
<td>214</td>
<td>...</td>
<td>-4.0%</td>
<td>14.4%</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>Fatalities by age group</td>
<td></td>
</tr>
<tr>
<td>0-14 years</td>
<td>184</td>
<td>114</td>
<td>56</td>
<td>42</td>
<td>32</td>
<td>34</td>
<td>-23.8%</td>
<td>-42.9%</td>
<td>-71.9%</td>
<td>-82.6%</td>
<td></td>
</tr>
<tr>
<td>15-17 years</td>
<td>129</td>
<td>104</td>
<td>53</td>
<td>45</td>
<td>35</td>
<td>39</td>
<td>-22.2%</td>
<td>-34.0%</td>
<td>-66.3%</td>
<td>-72.9%</td>
<td></td>
</tr>
<tr>
<td>18-20 years</td>
<td>340</td>
<td>204</td>
<td>138</td>
<td>81</td>
<td>91</td>
<td>85</td>
<td>12.3%</td>
<td>-34.1%</td>
<td>-55.4%</td>
<td>-73.2%</td>
<td></td>
</tr>
<tr>
<td>21-24 years</td>
<td>278</td>
<td>178</td>
<td>141</td>
<td>123</td>
<td>112</td>
<td>96</td>
<td>-6.9%</td>
<td>-20.6%</td>
<td>-37.1%</td>
<td>-59.7%</td>
<td></td>
</tr>
<tr>
<td>25-64 years</td>
<td>1 046</td>
<td>923</td>
<td>743</td>
<td>737</td>
<td>650</td>
<td>643</td>
<td>-11.8%</td>
<td>-12.5%</td>
<td>-29.6%</td>
<td>-37.9%</td>
<td></td>
</tr>
<tr>
<td>65-74 years</td>
<td>...</td>
<td>...</td>
<td>127</td>
<td>96</td>
<td>103</td>
<td>121</td>
<td>114</td>
<td>17.5%</td>
<td>26.0%</td>
<td>-4.7%</td>
<td></td>
</tr>
<tr>
<td>≥75 years</td>
<td>...</td>
<td>...</td>
<td>167</td>
<td>122</td>
<td>163</td>
<td>182</td>
<td>130</td>
<td>11.7%</td>
<td>49.2%</td>
<td>9.0%</td>
<td></td>
</tr>
<tr>
<td>Fatalities by road type</td>
<td></td>
</tr>
<tr>
<td>Inside urban areas</td>
<td>...</td>
<td>...</td>
<td>636</td>
<td>609</td>
<td>566</td>
<td>429</td>
<td>-3.8%</td>
<td>-7.9%</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>Outside urban areas</td>
<td>...</td>
<td>...</td>
<td>709</td>
<td>686</td>
<td>633</td>
<td>550</td>
<td>-7.7%</td>
<td>-10.7%</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>Traffic data</td>
<td></td>
</tr>
<tr>
<td>Registered vehicles (thousands)</td>
<td>10 081</td>
<td>12 373</td>
<td>16 061</td>
<td>18 387</td>
<td>18 781</td>
<td>19 173</td>
<td>2.1%</td>
<td>16.9%</td>
<td>51.8%</td>
<td>86.3%</td>
<td></td>
</tr>
<tr>
<td>Vehicle kilometres (millions)</td>
<td>162 233</td>
<td>184 593</td>
<td>228 774</td>
<td>254 845</td>
<td>260 175</td>
<td>263 462</td>
<td>2.1%</td>
<td>13.7%</td>
<td>40.9%</td>
<td>60.4%</td>
<td></td>
</tr>
<tr>
<td>Registered vehicles per 1,000 population</td>
<td>590.7</td>
<td>650.2</td>
<td>729.0</td>
<td>760.1</td>
<td>763.4</td>
<td>767.2</td>
<td>0.4%</td>
<td>4.7%</td>
<td>17.4%</td>
<td>29.2%</td>
<td></td>
</tr>
</tbody>
</table>

Note: until 2010 it was not possible to make the distinction between car occupants and other motor vehicle occupants.