BELGIUM

Belgium recorded 604 road fatalities in 2018 – a slight improvement on the previous record low registered in 2017. Since 2010, the number of annual road deaths has fallen by 29%. Despite the steady progress, it appears unlikely that the target of no more than 420 road deaths in 2020 will be achieved.

Trends

Belgium registered an overall decrease in the number of road deaths in both 2017 and 2018. According to latest available data, 604 persons lost their lives in traffic crashes in Belgium in 2018. This represents a decrease of five fatalities on the 670 fatalities recorded in 2016. Preliminary data for 2019 appear ominous, however. In the first trimester of 2019, Belgium recorded 14 more road fatalities and 2.3% more injury crashes than during the same period of 2018. The majority of the increase in fatalities was registered in the region of Wallonia (Vias, 2019).

The longer-term trend for road deaths in Belgium has been encouraging. Between 2000 and 2018, the number of annual road fatalities fell by 59%. The rate of road death reduction has remained relatively reliable with fatalities dropping an average of 4.7% per year during this time.

The number of traffic deaths per 100 000 inhabitants in Belgium has fallen by 63% between 2000 and 2018. In 2018, 5.3 traffic deaths per 100 000 inhabitants were recorded, compared to 14.4 in 2000. By way of comparison the average in the European Union is 4.9 deaths per 100 000 inhabitants in 2018.

Measured as traffic deaths per billion vehicle-kilometres (vkm) driven, the fatality risk of Belgium showed a similarly encouraging long-term trend. In 2017 this metric stood at 5.9, 64% lower than in 2000.

Belgium recorded 0.8 road fatalities per 10 000 registered vehicles in 2018. This represents a decrease of 69% compared to the year 2000, when the rate of deaths to registered vehicles stood at 2.6.
The picture for **fatalities by road user groups** shows that passenger car occupants continue to be the group most affected by road crashes. In 2018, passenger car occupants accounted for a plurality of road deaths with 45% of the total. They were followed by motorcyclists (15%), cyclists (15%), pedestrians (12%) and moped riders (3%).

The largest decrease in 2018 was registered among pedestrians with 21 fewer (-22.1%) deaths compared to 2017. They were followed by car occupants who saw 10 fewer deaths (-3.5%). Moped riders also saw 25% fewer fatalities – a decrease of 6 on 2017.

Less positively, cyclists saw 17.3% more fatalities in 2018 – an increase of 13 deaths on the year. Likewise, motorcyclists recorded an increase of 12.8% translating to 10 more fatalities than in 2017. In 2018 almost one quarter of cyclists killed were riding pedelecs, especially in the case of old people.

The long-term trend shows that traffic in Belgium has become safer for all road user groups. Since 2000, the strongest declines were registered among passenger car occupants and moped riders who saw reductions in the number of annual road fatalities of 70% and 72%, respectively. The user group that has benefitted least are motorcyclists, who saw the number of crash deaths fall by 25% since 2000.
Road deaths by age group in 2018 showed some changes compared to 2017. There was a sharp decrease in the number of annual road deaths among 18-20 year olds of 41.2%. On the other hand, among people between 65 and 74 years old, the number of fatal road casualties increased by 36.5%.

Looking at the longer-term trend, since 2000 the number of road deaths decreased for all groups. Young people benefitted the most from road safety improvements during this time with every age category up until 25 years old seeing road fatalities drop by a degree of around 75% or greater. Older people saw lesser, but still significant, gains during this period with those above 65 seeing annual road fatalities drop by more than 25% compared to figures from 2000.

Despite recent improvements, young people continue to be at high risk in traffic. 21-24 year olds support a mortality rate of 8.3 road fatalities per 100 000 persons.

However, elderly people have surpassed the young people in this regard. Where mortality rates for young people have more than halved since 2010, rates have remained stagnant for the elderly people. Those above 75 now have the highest mortality rate, with 9.7 road deaths per 100 000 persons.
Analysis of **fatalities by road type** shows that the rural network is the deadliest. In 2018, a slight majority, 51%, of deaths occurred on rural roads, 32% on urban roads and 16% on motorways. This repartition has remained relatively stable in recent years.

In 2018, in comparison to 2017, the number of road deaths increased by 1% on rural roads while decreasing 3.4% on urban roads and 1.1% on motorways.

Since 2000, road safety has improved the most on rural roads where annual road fatalities decreased by 63%, on urban roads by 51% and on motorways by 60%.
Fatality data are essential to understand road safety issues, but hardly sufficient. Information on serious injuries from crashes is also critically important. Yet injury data are much more difficult to obtain, validate and - where available - compare. In 2018, 3 636 Belgian road users were hospitalised, a decrease of 3.3% on 2017 and a 63% fall on 2000.

Economic costs of road crashes

In Belgium there is no immediately recent information on the cost of crashes. Unit costs are based on value transfer from European medians (Wijnen et al., 2017). Based on this
methodology, road crash costs would amount in 2015 to EUR 5.9 billion or 1.4% of Belgium’s GDP.

Table 1. Estimation of the costs of road crashes, 2015

<table>
<thead>
<tr>
<th></th>
<th>Unit cost [EUR]</th>
<th>Total [EUR]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatalities</td>
<td>2 519 610</td>
<td>1.8 billion</td>
</tr>
<tr>
<td>Serious injuries</td>
<td>311 916</td>
<td>1.3 billion</td>
</tr>
<tr>
<td>Slight injuries</td>
<td>30 203</td>
<td>1.4 billion</td>
</tr>
<tr>
<td>Property damage costs</td>
<td>3 960</td>
<td>1.3 billion</td>
</tr>
<tr>
<td>Total</td>
<td>5.9 billion</td>
<td></td>
</tr>
<tr>
<td>Total as % of GDP</td>
<td>1.4%</td>
<td></td>
</tr>
</tbody>
</table>

Behaviour

The behaviour of road users is an important determinant of a country’s road safety performance. **Speed**, and especially inappropriate speed, is one of the main causes of crashes in Belgium.

In 2015, speed outside built-up areas was measured through floating car data (FCD), recorded by GPS or mobile phones. The measurement showed that Belgian drivers drive too fast. Speeding issues are the most problematic on motorways and two-lane roads (90 km/h), with an alarming number of speeding violations of more than 10 km/h (over 30%).

In 2015, speed inside built-up areas was measured with a radar system. The measurement showed that in 30 km/h zones, 36% of car drivers complied with the speed limit and 64% drove more than 10 km/h too fast. In school zones, 10% of drivers respected the 30 km/h speed limit and 60% drove more than 10 km/h too fast. On 50 km/h zones, 64% of drivers complied with the speed limit and 10% drove more than 10 km/h too fast. The results demonstrate frequent speed infringements, especially at night and in school zones.

Belgium’s first speed camera system to control average speed on a section of a motorway was put into operation in June 2012. Early 2017, systems were operational in seven locations. More than 30 additional sections are planned by the Flemish and the Walloon road authorities, while the Brussels region is also testing a first project.

Flanders lowered the general speed limit outside built-up areas from 90 to 70 km/h, as of 1 January 2017; however most of these roads were already limited to 70 km/h. Moreover, as of 2017, local decision makers need to justify a speed higher than 70 km, whereas previously they needed to give reasons for not allowing 90 km/h. This also means that the default speed limits are not the same all over Belgium but change at regional borders.

The table below summarises the main speed limits in Belgium.
Table 2. Passenger car speed limits by road type, 2019

<table>
<thead>
<tr>
<th>General speed limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban roads</td>
</tr>
<tr>
<td>Rural roads</td>
</tr>
<tr>
<td>Motorways</td>
</tr>
</tbody>
</table>

Driving under the influence of alcohol is another major cause of road crashes in Belgium, as in most IRTAD countries.

The maximum authorised blood alcohol content (BAC) is 0.5 g/l. Since January 2015 the limit for professional drivers is 0.2 g/l.

An alcohol-related crash is defined as a crash involving a road user (including a pedestrian) who was subjected to a test and either refused to be tested or had a blood alcohol concentration of 0.5 g/l or higher. In 2018, 1.94% of car drivers tested had a blood alcohol level above the legal limit, the same proportion as 2005 and 2007 but slightly lower than in 2012 (2.69%) and 2015 (2.74%). Furthermore, the share of highly intoxicated drivers (more than 0.35 mg or 0.8 g/l BAC) among offenders remains stable (from 69% in 2015 to 68% in 2018). Behavioural measurement highlights an alarming upward trend of driving under the influence of alcohol during the week and weekend nights.

In Belgium legislation sets limits for driving under the influence of drugs: THC or cannabis (1 ng/ml), amphetamines (25 ng/ml), MDMA or ecstasy (25 ng/ml), morphine (10 ng/ml) and cocaine (25 ng/ml). Drivers suspected of being impaired are tested for drugs. They can also be tested if the driver transports drugs, admits having taken drugs or is involved in a crash. Since December 2015, a new executive decree under the road traffic law went into force. It offers additional tools and quicker ways to determine psychoactive substances in blood and saliva.

In 2009, the European research project, "Driving Under the Influence of Drugs, Alcohol and Medicines" (DRUID), found for the sample in Belgium that 0.5% of all drivers drove under the influence of cannabis, 0.4% under the influence of cocaine and 0.2% under the influence of heroin. No trace of amphetamines ("speed" and/or "ecstasy") was found among those Belgian drivers tested.

An increasing problem for traffic safety in Belgium is distraction, for instance through the use of mobile phones while driving. The use of hand-held phones while driving is forbidden. The use of hands-free devices while driving is authorised. A pilot observation survey was undertaken in 2015 in three large Belgian cities on the use of mobile phones by road users waiting at traffic lights. It showed that 7% of the car drivers, 9% of the drivers of light goods vehicles, 5% of cyclists and 18% of pedestrians used their mobile phone while stopped at traffic lights.

Recent research on the use of hands-free devices showed that hands-free phoning has a clear influence on driving behaviour: less and shorter fixations at a number of areas.
relevant for traffic safety and modification of the visual scan pattern. This suggests that during hands-free phoning the driver focuses less on the traffic situation (Desmet et al., 2017).

The share of **fatigue** as a causal factor in crashes is challenging to detect but nevertheless believed to be a serious issue. Study results show that 5.1% of car journeys in Belgium involved a driver showing signs of sleepiness (Pelsers and Diependaele, 2018). The analysis of contextual variables shows that various circumstances result in a prevalence that is considerably higher than the overall estimate of 5.1%.

Seat belt use has been compulsory in front seats since 1975 and in rear seats since 1991. Children must be protected by a child restraint appropriate for their size and weight. In 2018, the rate of seat belt use was 95% for drivers and 96% for front seat passengers in passenger cars. For rear-seat passengers it was however much lower at 86%. Clear progress in seat belt use occurred between 2003 and 2015. However, the 2010 target of 95% seat belt use has still not been met. In 2017, 87% of the children were restrained, but only 23% of them with an appropriate system and in the correct manner (Schoeters and Lequex, 2018).

Table 3. Seat belt wearing rate by car occupancy and road type

<table>
<thead>
<tr>
<th></th>
<th>2000</th>
<th>2010</th>
<th>2015</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front seats</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Driver</td>
<td>..</td>
<td>86</td>
<td>92</td>
<td>95</td>
</tr>
<tr>
<td>Passenger</td>
<td>..</td>
<td>86</td>
<td>92</td>
<td>96</td>
</tr>
<tr>
<td>Urban roads (driver)</td>
<td>50</td>
<td>84</td>
<td>91</td>
<td>95</td>
</tr>
<tr>
<td>Rural roads (driver)</td>
<td>57</td>
<td>87</td>
<td>93</td>
<td>96</td>
</tr>
<tr>
<td>Motorways (driver)</td>
<td>66</td>
<td>90</td>
<td>93</td>
<td>96</td>
</tr>
<tr>
<td>Rear seats</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General</td>
<td>..</td>
<td>..</td>
<td>86</td>
<td>86</td>
</tr>
<tr>
<td>Children (use of child restraint)</td>
<td>..</td>
<td>..</td>
<td>35/89<sup>1</sup></td>
<td>23/87<sup>2</sup></td>
</tr>
</tbody>
</table>

1. In 2014, among drivers who agree to have the child seat use investigated, 89% of the children are somehow restrained, but only 35% correctly so (appropriate system & correct use) (Roynard, 2015).
2. In 2017, 87% of the children were restrained, but only 23% correctly so.

For motorcyclists, **helmet wearing** is the most effective passive safety habit. All riders of powered two-wheelers are required to wear helmets. Motorcyclists (>50cc) also have to wear gloves, boots that protect the ankle, long-sleeved jacket and long trousers. The helmet-wearing rate by riders of powered two-wheelers is not systematically monitored for the whole country. In Brussels, the observed rate was 99.3% in 2013 (Riguelle and Roynard, 2013).

There is no mandatory helmet-use law for cyclists.
Road safety management and strategies

Between 1990 and 2018, the number of fatalities decreased by 69%. The biggest share of these improvements fell to the period following 2000. Around the time of the millennium change, road safety became an issue of great public interest in Belgium. While the number of fatalities had been stagnating or had even increased in the late 1990s, this number has steadily declined since 2001, the year in which the first national assembly on road safety (États Généraux de la Sécurité Routière/Staten-Generaal van de Verkeersveiligheid) initiated many improvements in infrastructure, enforcement and education. The most important measures to have contributed to the decline of mortality in Belgium are:

- reduction of the speed limit on many rural roads;
- stricter control of speed limits;
- black-spot treatment and adjustment of the infrastructure;
- improved safety systems in cars and trucks;
- better road safety awareness through campaigns and educational measures.

Responsibility for the organisation of road safety at the **Federal level** lies with the **Federal Commission for Road Safety** which organises the General Assembly on Road Safety where the Belgian Road Safety Programme, including the target for 2020, was decided in 2011.

As a federal country, however, many decisions are taken by the Regions themselves. In 2015, several public responsibilities in relation to road safety shifted from the federal to regional government. At a federal level, responsibility for traffic regulation (although speed limits on regional roads are a regional matter), vehicle safety regulation, licensing (although driver training is now a regional matter) and most of the enforcement chain has been kept. All other road safety matters (infrastructure, education, campaigns, training, local police controls) are now determined at the regional level.

The present national **road safety strategy** was released in 2011 and was updated at the General Road Safety Assembly in 2015. It was then exclusively focused on the remaining federal responsibilities and 16 key measures were proposed. For many of these measures it is still unclear whether they can be implemented. As of December 2017, the Federal Commission for Road Safety, whose status for a time was unclear, is once again actively meeting and has started a systematic evaluation of the measures proposed in 2015.

For the Flemish region, the regional government has set up ‘Road safety Flanders’ (‘Vlaams Huis voor de Verkeersveiligheid’ [VHV]) to better align and coordinate all actions concerning road safety. VHV unites all partners that work on road safety and has assigned them to four working groups:
• education and awareness;
• infrastructure, vehicle technology and innovation;
• enforcement;
• evaluation, monitoring and research.

These working groups have set out a range of measures which form the core of the Road Safety Plan Flanders 2016 and are now monitoring how these are put into action. The Road Safety Plan Flanders also includes short-term (2020), medium-term (2030) and long-term (2050) targets related to fatalities, injuries and number of crashes.

For Wallonia, the Conseil Supérieur Wallon de la Sécurité Routière (CSWSR) has taken over this responsibility under the leadership of the Agence Wallonne pour la Sécurité routière (AWSR). A regional General Assembly was organized in June 2017 and a road safety plan was presented, with the objective to register less than 200 road deaths in Wallonia in 2020 (as compared to 300 road deaths in 2016). Several recommendations were proposed including a steady increase of police checks on speed offences and an increase in checks on driving under the influence of alcohol or drugs.

For the Brussels region it is not yet clear which agency will take the lead in Road Safety.

The mission from the previous decade, to achieve a 50% decrease in fatalities between 2001 and 2011, was renewed for the period 2011-20. The European target of halving fatalities by 2020 was adopted, meaning fewer than 420 road fatalities. Forecasting based on past development predicts between 434 and 635 fatalities for 2020. With the present efforts Belgium will therefore not reach the 2020 target of 420 and additional efforts are required.

Figure 7. Trends in road fatalities towards national target
Measures

Several measures to improve road safety management have recently been put into place.

Enforcement

- In February 2018, a range of fees and possible prison sentences have been raised significantly (up to 100%). The law also makes the vehicle owner liable.

- As of February 2018, a judge is obliged to impose an alcolock for drivers caught with a blood alcohol content above 1.8 g/l (and above 1.2 g/l for recidivists).

- As of March 2018, a new central procedure for fines eases the bureaucratic effort of distributing and following up on fines. Moreover it allows police to send fines to drivers from other countries.

- As of June 2018, a new procedure for the analysis of saliva and blood for drugs has been introduced that allows the police to conduct more controls.

Drivers’ licensing

- Risk perception tests, consisting of a few short movies that have to be evaluated by the candidate, are now part of the mandatory practical exam.

- In Flanders, novice drivers have to attend a follow-up course six to nine months after obtaining their licence. The training takes 4 hours and costs EUR 100. It consists of practical training on a closed circuit and of group discussions about their attitudes on the road.

Autonomous vehicle testing

- Two pilots with autonomous vehicles are now running in Belgium, one on a 500 m route in an urban environment and the other on a 2.5 km route in rural environment. The shuttle buses seat 15 passengers, pass through actual traffic and interact with other road-users (https://youtu.be/wBvnED97J-8).

Definition, methodology, data collection

- Road fatality: a person who died immediately or within 30 days of a crash.

- Seriously injured: a person who stays for treatment for more than 24 hours in a hospital following the crash, as reported by police.

- Slightly injury: a person who claims to be in need of medical treatment, as reported by police.
The differentiation between a slightly and a seriously injured person is not reliable as this distinction is determined by police at the crash scene. Most Belgian reports therefore treat slightly and seriously injured jointly.

Road safety data are electronically collected and centralised by the police force. After some validation procedures, data are transferred to the National Statistics Office. The National Statistics Office carries out some corrections and adds the fatalities occurring within 30 days to the database. This latter operation is done by linking the notification of death (a paper form with very basic information) that is sent by the Department of Justice to the National Statistical Office.

The number of slightly and seriously injured persons is the most likely to be underreported, as many crashes, especially with cyclists and motorcyclists, are not reported to the police. Since 2015, a new procedure has been under development to take hospital data into account. This will result in correction for underreporting and an estimation of the number of victims with injuries of a Maximum Abbreviated Injury Score of 3 and above (MAIS3+).

In 2014 the road safety database in Belgium was modified. The database now contains both injury crashes recorded by the police at the scene of the accident and injury crashes self-reported at a police station. The quality of the database has also improved thanks to changes in the data processing method, which notably allow for better identification of user types and of characteristics of individuals and vehicles. The database is therefore more comprehensive. However, it also means that statistics from 2014 onwards are not fully comparable with those of previous years. Also, due to the registration of cases that would earlier not have been registered, there is an increase in the number of the "unknown" category in many variables. Comparisons with previous years should therefore be made with caution.

Resources

Recent research

De Ceunynck, T., F. Slootmans and S. Daniels (2018), In-depth study of characteristics and profiles of severe moped crashes in built-up areas. Brussels, Belgium: Vias institute – Knowledge Centre Road Safety,
https://www.vias.be/publications/Diepteanalyse%20van%20de%20karakteristieken%20en%20profielen%20van%20ernstige%20bromfietsongevallen%20binnen%20de%20bebouwde%20kom/In-depth_study_of_characteristics-MOPED.pdf

Meesmann, U., K. Torfs, H. Nguyen and W. Van den Berghe (2018); Do we care about road safety? Key findings from the ESRA1 project in 38 countries, Brussels, Belgium: Vias institute – Knowledge Centre Road Safety,

Meunier, J. C., E. Dupont, J. Mersch and W. Van den Berghe (2018), My Life After the Crash - MyLAC - An international study on medical, psycho-social and economic

Websites

Vias Institute: https://www.vias.be/en/

Conseil supérieur wallon de la sécurité routière: http://www.cswsr.be/

Agence wallonne pour la Sécurité routière: http://www.awsr.be/

Instituut voor Mobiliteit Universiteit Hasselt: https://www.uhasselt.be/IMOB-EN

Vlaamse stichting verkeerskunde (Flemish Foundation for Traffic Knowledge): https://www.vsv.be/

References

Road safety and traffic data

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatalities</td>
<td>1,976</td>
<td>1,470</td>
<td>850</td>
<td>670</td>
<td>609</td>
<td>604</td>
<td>-0.8%</td>
<td>-9.9%</td>
<td>-58.9%</td>
<td>-69.4%</td>
</tr>
<tr>
<td>Injury crashes</td>
<td>62,446</td>
<td>49,065</td>
<td>45,745</td>
<td>40,123</td>
<td>38,025</td>
<td>38,455</td>
<td>1.1%</td>
<td>-4.2%</td>
<td>-21.6%</td>
<td>-38.4%</td>
</tr>
<tr>
<td>Injured persons hospitalised</td>
<td>17,479</td>
<td>9,847</td>
<td>5,606</td>
<td>4,095</td>
<td>3,762</td>
<td>3,636</td>
<td>-3.3%</td>
<td>-11.2%</td>
<td>-63.1%</td>
<td>-79.2%</td>
</tr>
<tr>
<td>Deaths per 100,000 population</td>
<td>19.9</td>
<td>14.4</td>
<td>7.8</td>
<td>5.9</td>
<td>5.4</td>
<td>5.3</td>
<td>-1.2%</td>
<td>-10.5%</td>
<td>-63.1%</td>
<td>-73.3%</td>
</tr>
<tr>
<td>Deaths per 10,000 registered vehicles</td>
<td>4.3</td>
<td>2.6</td>
<td>1.3</td>
<td>0.9</td>
<td>0.8</td>
<td>0.8</td>
<td>-2.3%</td>
<td>-12.6%</td>
<td>-68.7%</td>
<td>-81.4%</td>
</tr>
<tr>
<td>Deaths per billion vehicle kilometres</td>
<td>28.1</td>
<td>16.3</td>
<td>8.6</td>
<td>6.6</td>
<td>5.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fatalities by road user

Pedestrians	301	142	108	81	95	74	-22.1%	-8.6%	-47.9%	-75.4%
Cyclists	196	134	73	81	75	88	17.3%	8.6%	-34.3%	-55.1%
Moped riders	110	64	23	16	24	18	-25.0%	12.5%	-71.9%	-83.6%
Motorcyclists	106	118	103	79	78	88	12.8%	11.4%	-25.4%	-17.0%
Passenger car occupants	1,811	922	451	343	285	275	-3.5%	-19.8%	-70.2%	-76.7%
Other road users	82	90	92	70	52	61	17.3%	-12.9%	-32.2%	-25.6%

Fatalities by age group

0-14 years	108	52	28	16	14	14	0.0%	-12.5%	-73.1%	-87.0%
15-17 years	72	55	21	10	12	9	-25.0%	-10.0%	-83.6%	-87.5%
18-20 years	202	130	65	42	34	20	-41.2%	-52.4%	-84.6%	-90.1%
21-24 years	245	198	108	46	43	45	4.7%	-2.2%	-77.3%	-81.6%
25-64 years	992	784	467	385	349	338	-3.2%	-12.2%	-56.9%	-65.9%
65-74 years	..	114	67	73	52	71	36.5%	-2.7%	-37.7%	..
≥ 75 years	..	124	88	89	99	98	-1.0%	10.1%	-21.0%	..

Fatalities by road type

Urban roads	..	401	249	194	203	196	-3.4%	1.0%	-51.1%	..
Rural roads	..	836	459	336	307	310	1.0%	-7.7%	-62.9%	..
Motorways	..	233	105	100	95	94	-1.1%	-6.0%	-59.7%	..

Traffic data

Registered vehicles (thousands)	4,594	5,735	6,689	7,302	7,419	7,533	1.5%	3.2%	31.4%	64.0%
Vehicle kilometres (millions)	70,276	90,036	98,678	101,668	103,175
Registered vehicles per 1,000 population	461.8	560.1	617.1	645.5	653.6	660.9	1.1%	2.4%	18.0%	43.1%

Note: registered vehicles do not include mopeds.