

Joint Transport Research Centre

Long Life Surfaces for Busy Roads

TRA2008 WORKSHOP Ljubljana, 22nd April 2008

The generalised business case for very long-life surface pavements on roads with heavy traffic

by

Jorgen Christensen Chair, JTRC WG IM3

Context and background

- National road networks are amongst largest community assets
 - predominately government-owned in most countries
- Road administrations are increasingly adopting life cycle / asset management approaches
- Long service life of road pavements on high traffic roads has long been a key goal for road professionals
- Surface layer or wearing course is the Achilles' heel of the long life pavement concept
- Trends in traffic growth leading to increasing proportions of highly trafficked roads - which become candidates for more durable pavements at higher construction costs

Long Life Pavements – Phase I : Economic Evaluation Findings

- LLP Phase 1 Report was published by OECD in 2005
- Economic analysis in Phase I study explored potential economic benefits of long life wearing courses able to meet performance requirements over 30-40 years
- Findings: long-life surfacing costing around three times that of traditional wearing courses would be economically feasible for a range of high-traffic roads
- Emphasises importance of taking user costs into account

Structure of the analysis

- Surveying traditional pavements for high-traffic roads
 - Initial costs
 - Expected life
 - Maintenance strategies
 - Maintenance costs
 - Closure duration for maintenance activities
- Exploring potential advanced materials in international workshop with industry participation
- Establishing suitable evaluation framework and demands on the cost model
- Evaluating candidate costing model
- Selecting basis scenario for evaluation
- Conducting the analysis

Basis of the evaluation

- Model used: TRL's PASI model (by Highways Agency)
- Scenario: 4 km motorway with dual 3-lane carriageways
 - preconstructed, with long-life subgrade
 - 45 years maintenance with traditional or advanced pavement
- Traditional treatment
 - initial surfacing with 30 mm SMA
 - replaced every 10/8 yrs for heavy/very heavy traffic with 30 mm
 - replaced every 20/16 yrs for heavy/very heavy traffic with 100 mm
 - Costs: USD 8/sq m for 30 mm resurfacing (removal and replacing)
- Advanced treatment
 - Surfacing life to replacement: 30 or 40 yrs
 - Treatment for skidding resistance at intermediate periods
 - Costs: 3 or 5 times the cost of traditional treatment

Standard test case results (1)

Surface treatment costs	Net present value (1000 USD)	
Contributing factors	Traditional	
Initial works (treatment in yr 0)	480	
Maintenance works	1.084	
User delay	1.279	
Traffic mgmt.	259	
Residual value	-44	
Total Net Present Value (NPV)	3.058	

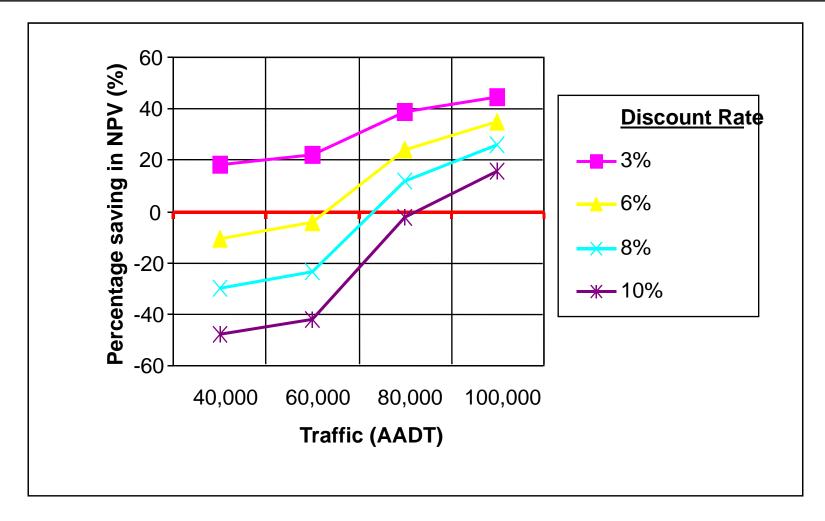
Standard test case results, night work (2)

Surface treatment costs	Net present value (1000 USD)	
Contributing factors	Traditional	Advanced
Initial works (treatment in yr 0)	480	1.441
Maintenance works	1.084	282
User delay	1.279	516
Traffic mgmt.	259	169
Residual value	-44	-92
Total Net Present Value (NPV)	3.058	2.317
Difference		741
Percentage difference		24 %

More to the standard case

AADT =	80 000
Heavy Vehicles =	15 %
Advanced : Traditional cost ratio	3:1
 Life of advanced material, years 	40
 Traffic growth per annum 	1 %
Rate of discount per annum	6 %

Standard test case results, day work (2)


Surface treatment costs	Net present value (1000 USD)	
Contributing factors	Traditional	Advanced
Initial works (treatment in yr 0)	480	1.441
Maintenance works	1.084	282
User delay	4.216	1.720
Traffic mgmt.	254	166
Residual value	-44	-92
Total Net Present Value (NPV)	5.990	2.317
Difference		2.473
Percentage difference		41%

Joint Transport Research Centre

Standard Case Sensitivity to AADT and Discount Rate

Long Life Pavements – Phase I : Findings

- Maintaining safe, comfortable and durable surfaces on heavily trafficked motorways is a major challenge to road owners
- Long-life surfacing costing around three times that of traditional wearing courses could be economically feasible
- Findings on Materials: Two long life surfacing materials warrant further investigation:
 - Epoxy Asphalt
 - High Performance Cementitious Materials (HPCM)

Long Life Pavements – Phase II Objectives

- Gain necessary knowledge about the potential strengths and limitations of *Epoxy Asphalt* and *High Performance Cementitious Materials (HPCM*), by:
 - Establishing properties and behaviour of the two material
 - Optimising material mixes
 - Testing their performance / suitability for long-life wearing courses
 - Proposing Phase III full scale tests, if performance results are positive and indicative costs generally consistent with Phase I

Long Life Pavements – Phase II Process

- Adoption by Joint Transport Research Committee in 2004
- Nomination of participants in Working Group by JTRC member countries in 2004
- Coordination of the testing programme in national laboratories beginning late 2004
- Completion of testing in early 2007
- Publication of final report summary in late 2007

Long Life Pavements – Phase II Mandate

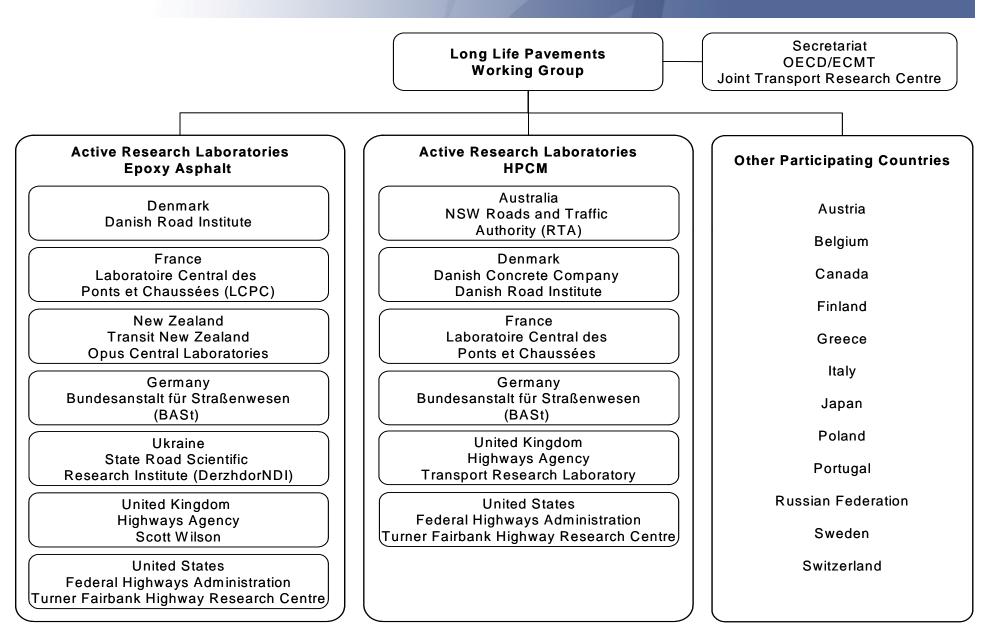
- Scope of the Phase II study as approved by Transport Ministers of OECD and ECMT countries in May 2004 was:
- "This next phase of the project will coordinate sufficient initial testing by national testing laboratories to assess the durability of the wearing courses. This will involve small-scale testing (laboratory testing and accelerated load testing) of the most promising pavement materials".

Long Life Pavements – Phase II Members

• **Laboratory testing**: 9 active laboratories from 8 countries

- Australia, Denmark, France, Germany, New Zealand,
 Ukraine, United Kingdom (x2), United States
- Working Group members: 37 members from 18 supporting countries and JTRC Secretariat

Australia, Austria, Belgium, Denmark, France, Germany, Greece, Italy, Japan, New Zealand, Poland, Portugal, Russian Federation, Sweden, Switzerland, Ukraine, United Kingdom, United States.


• External Reviewers of Final report: from 2 other countries:

Canada and Finland

International Transport Forum

Joint Transport Research Centre

