

HPCM as a surface pavement Concept and properties

François de Larrard Coordinator of the HPCM sub-project LCPC Nantes - France

Summary

- Design of HPCM complex
- Plain mortar tests
- Cracking tests
- Surface resistance tests
- Miscellaneous
- Conclusion

Design of HPCM complex

Design of HPCM complex (cont.)

- « Ultra-ultra » thin white topping
- Main idea: best available mineral materials in minimum quantities

Design of HPCM complex (cont.)

Components	Kg/m ³
Siliceous coarse sand 0.2/1	429
Siliceous fine sand 0.08/0.315	429
CEM I Portland cement	985
Silica fume	197
Superplasticizer (dry powder)	4.40
Retarder	4.95
Water	207
w/c	0.21
Slump (cm)	21

Plain mortar tests

Dimensions of specimens (cm)	Type of test	Mean value (MPa)
Prisms 4x4x16	Flexural	28.5
Prisms 4x4x16	Compressive	164
Cubes 10x10x10	Compressive	148
Cylinders Ø11x22	E-modulus	43 000
Cylinders Ø11x22	Compressive	129

(with 4% PVA fibres)

Plain mortar tests (cont.)

- Flexural fatigue behavior
 - tests on mortar reinforced with 2 % of either steel or PVA fibres
 - imposed deflection = 3 times the real one (under traffic loading)
 - $-25\ 10^6$ cycles
 - good behavior (decrease of E-modulus, but no failure)

Plain mortar tests (cont.)

Plain mortar tests (cont.)

- Cracking motors:
 - high shrinkage
 - autogenous: 650 10⁻⁶ at 250 days
 - total shrinkage at 50% R.H.: 800 10⁻⁶ at 250 days
 - high coefficient of thermal expansion (17.6 10⁻⁶ K⁻¹)
- => limited risk of buckling by hot wheather, but need of fibres to control cracking

Cracking tests

- Aim: to design the fibre reinforcement
- Two types of fibres
 - steel
 - PVA (Poly Vinyl Alcohol)
- Dosage: from 1 to 5 % in volume

Cracking tests (cont.)

Tests at LCPC (France)

Cracking tests (cont.)

Results for plain mortar (no fibres)

Tests at DBT (Denmark)

12

OECD

Tests at RTA (Australia)

Cracking tests (cont.)

- Scale-1 test performed with 4 % of PVA fibres => cracking
- Better behavior with steel fibres
- With 3 % of SF, no visible cracks are likely to appear
- Stiff (asphalt) base course necessary

Surface resistance tests

- Rutting tests
- ASTM abrasion test
- Tribometer test
- Freeze/thaw test
- «Total test»: acid attack + freeze/thaw + shocks

The rutting tester LCPC (France)

17

Abrasion test FHWA TFHRC (USA)

Surface resistance tests (cont.)

- Results:
 - excellent behavior under freeze/thaw
 - calcined bauxite => polishing not expected
 - limited loss of chippings likely to appear under trafic (≈ 10 % ?) depending on the level of embedment
 - no influence on skid resistance

Miscellaneous

- Noise generation
 - studied through texture assessment and numerical simulation
 - result: comparable to exposed-aggregate concrete of same texture
- Behavior under fatigue loading

PTF test at TRL (UK)

Miscellaneous (cont.)

- PTF Test
 - -1 M standard axle at 20°C
 - -0.5 M at 35°C
 - low rutting (1.5 mm instead of 8 mm for standard SMA)
 - delamination of asphalt at the edges => need for a stiff, low rutting asphalt

Conclusion

- New material developed in an international collaborative project
- Encouraging results
- Need for further research (laying technique, machinery for industrial application)
- Next step: LLP phase III with trafficked test sections

