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Executive summary 

This report examines issues relating to the arrival of massive, often real-time, data sets whose exploitation 
and amalgamation can lead to new policy-relevant insights and operational improvements for transport 
services and activity. It is comprised of three parts. The first section gives an overview of the issues 
examined. The second broadly characterises Big Data, and describes its production, sourcing and key 
elements in Big Data analysis. The third section describes regulatory frameworks that govern data collection 
and use, and focuses on issues related to data privacy for location data.  

What we found 
The volume and speeds at which data today is generated, processed and stored is unprecedented. It will 
fundamentally alter the transport sector 

The combination of low-cost and widespread sensing (much of it involving personal devices), the steep drop 
in data storage costs and the availability of new data processing algorithms improves our ability to capture 
and analyse more detailed representations of reality. Today these representations augment traditional 
sources of transport data collection. In the future they will likely replace them.  

Sensors and data storage/transmission capacity in vehicles provide new opportunities for enhanced safety 

Work is underway to harmonise standards regarding these technologies and communications protocols in 
order to accelerate safety improvements and lower implementation costs for conventional and, increasingly, 
automated vehicles.  

Multi-platform sensing technologies are now able to precisely locate and track people, vehicles and objects  

Locating and tracking individuals at precisions up to a few centimetres in both outdoor and indoor 
environments is feasible and will likely become standard – at least in urban areas – as location-sensing 
technologies become omnipresent. The widespread penetration of mobile, especially smartphone, 
technology makes this possible in ways not previously achievable. The location technologies deployed in 
today’s mobile phones are increasinglybeing built into vehicles, enabling precise and persistent tracking. 

The fusion of purposely-sensed, opportunistically-sensed and crowd-sourced data generates new knowledge 
about transport activity and flows. It also creates unique privacy risks 

When combined, these data reveal hitherto unsuspected or unobserved patterns in our daily lives. They can 
be used to the benefit of both individuals and society. There is also the risk that insights derived from these 
patterns may open new avenues for misuse and potential manipulation of individuals and their behaviour. 
The knowledge derived from this fusion may not have been anticipated by data collectors at the time of 
collection and the use of these insights may not have been anticipated or communicated to people who are 
the object of that data. 

Location and trajectory data is inherently personal in nature and difficult to anonymise effectively 

Tracking and co-locating people with other people and places exposes a daily pattern of activity and 
relationships that serve as powerful quasi-identifiers. Trajectories are as unique as fingerprints and though 
many techniques exist to de-identify this data, doing so effectively, while retaining sufficient detail for 
useful analysis, is not easy. 

Data protection policies are lagging behind new modes of data collection and uses. This is especially true for 
location data 

Rules governing the collection and use of personal data (e.g. data that cannot be de-identified) are 
outdated. Data is now collected in ways that were not anticipated by regulations, and authorities have not 
accounted for the new knowledge that emerges from data fusion. A split has emerged between those who 
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would seek to retain prior notification and consent frameworks for data collection and those who would 
abandon these in order to focus only on specifying allowable uses of that data. 

 

Policy insights 

Road safety improvements can be accelerated through the specification and harmonisation of a limited set 
of safety-related vehicle data elements 
Technologies like E-call, E-911 and vehicle data black boxes provide post-crash data well suited for 
improving emergency services and forensic investigations. Much more vehicle-related data is available and, 
if shared in a common format, could enhance road safety. Further work is needed to identify a core set of 
safety-related data elements to be publicly shared and to ensure the encryption protocols necessary to 
secure data that could compromise privacy. 

Transport authorities will need to audit the data they use in order to understand what it says (and what it 
does not say) and how it can best be used 
Big Data in transport is not immune from small data problems – especially those relating to statistical 
validity, bias and incorrectly imputed causality. Transport authorities will need to ensure an adequate level 
of data literacy for handling new streams of data and novel data types. Ensuring robust and persistent 
metadata with harmonised provenance will facilitate data usability audits. Big Data is often not clean. Lack 
of data quality may mean significant upfront costs to render the data useable. This should be factored into 
decision making processes. 

More effective protection of location data will have to be designed upfront into technologies, algorithms and 
processes 
Adapting data protection frameworks to increasingly pervasive and precise location data is difficult, largely 
because data privacy has not been incorporated as a design element from the outset. Both voluntary and 
regulatory initiatives should employ a “Privacy by Design” approach which ensures that strong data 
protection and controls are front-loaded into data collection processes. Technological advances including the 
arrival of system-on-a-chip sensors can aid this by allowing on-the-fly data encryption. Other advances 
could include protocols allowing for citizens to control and allocate rights regarding their data. Failing to 
ensure strong privacy protection may result in a regulatory backlash against the collection and processing 
of location data. This could hamper innovation, reduce consumer welfare and curb the social and economic 
benefits the use of such data delivers. 

New models of public-private partnership involving data-sharing may be necessary to leverage all the 
benefits of Big Data 
An increasing amount of the actionable data pertaining to road safety, traffic management and travel 
behaviour is held by the private sector. Yet public authorities are still, and will likely continue to be, 
mandated to provide essential services.  Innovative data-sharing partnerships between the public and 
private sectors may need to go beyond today’s simple supplier-client relationship. These new arrangements 
should not obviate the need for market power tests, cost-benefit assessment and public utility objectives. 

Data visualisation will play an increasingly important role in policy dialogue 
Effective data visualisations can quickly communicate key aspects of data analysis and reveal new patterns 
to decision makers and the public. Public agencies will need to be able to handle the visual language of data 
as effectively as they handle written and spreadsheet-based  analysis. 
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Introduction 

This report was written on the basis of desk research and expert input and interviews among practitioners 
and researchers from both the public and private sectors. It investigates how mobility-related data 
generation, collection and use are rapidly evolving, reviews existing data protection frameworks and 
highlights several key strategic areas where data privacy will have to be improved if long-term innovation 
benefits are to be realised. 

The principal author of this report was Philippe Crist of the International Transport Forum with substantial 
inputs provided by Emma Greer and Carlo Ratti of Carlo Ratti Associati, Paulo Humanes of PTV AG and 
Gilbert Konzett, Jasja Tijink, Diego Figuero and Richard Lax, all of Kapsch TrafficCom. The report benefitted 
from valuable inputs provided by José Viegas and Antigone Lykotrafiti. The project was coordinated by 
Philippe Crist and Sharon Masterson of the International Transport Forum. 
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1. Big Data, big changes 

Never before has so much timely information about events, people and objects been so widely and quickly 
available. One recent estimate puts the total size of the “digital universe” – comprised of digital content 
spanning from photographs, movies and surveillance video feeds, data produced and sent by sensors and 
connected devices, internet content, email, sms, audio streams to phone call metadata – at 4.4 zettabytes 
(see Figure 1) in 2013. Doubling every two months, the size of the digital universe is projected to grow to 
44 zettabytes in 2020 (IDC, 2014). For reference, the total amount of visual information conveyed by the 
eyes to the brains of the entire global population in 2013 amounted to approximately 1 zettabyte per day. 
These estimates represent a staggering amount of data, and a significant portion relates to events and 
people (credit card and payment transactions, surveillance video, vehicle sensor outputs, Wi-Fi access 
signals, volunteered text and imagery on social networks). This datacan be used to better understand, 
anticipate or manipulate human behaviour.  

The acceleration in both the growth and velocity of exploitable and often open data will trigger significant 
and disruptive change across a number of sectors – including transport. Compelling cases have been made 
for the value of Big Data analytics for urban planning (via the convergence of high definition geographic 
data with information regarding the observed or interpreted use of urban space by citizens), intelligent 
transport (via visualisation and analysis of the real-time usage of transport networks) and safety (via the 
processing of real-time data regarding vehicle operation and the surrounding environment to avoid or 
minimise potentially dangerous conflicts). However, it is not clear that authorities and regulation within and 
outside of the transport sector have kept pace with the proliferation of new, or newly available, data. Just 
as a better understanding of how mobility-related data can help resolve policy challenges relating to 
congestion and safety, for example, failure to account for the changing nature of data collection, use and 
access can also lead to negative outcomes - in particular regarding an unintended and unwanted erosion of 
privacy rights. 

To be clear, the collection and exploitation of large data sets – so-called “Big Data”– is not new and is not 
linked to a single technological change. Rather, what has occurred is the confluence of new data collection 
mechanisms based on ubiquitous digital devices, greatly enhanced storage capacity and computing power 
as well as enhanced sensing and communication technologies. These technologiesenable near real-time use 
and transmission of massive amounts of data.  

Some of these data streams are purpose-built to address well-defined questions and to resolve specific 
tasks. For instance data from automatic toll payment transponders broadcast data necessary for the 
processing and secure payment of road tolls. However, much of the potential value (or damage) from data 
lies in its combinatory use with other data sources. These data need not be well-defined or purpose-tied – 
and often are not. They are more akin to “digital dust” that lingers from our interactions with any number 
of computing systems and digital infrastructure and services. 

When combined, these data reveal hitherto unsuspected or unobserved patterns in our daily lives which can 
be used to benefit both individuals and society. There is also the risk that insights derived from these 
patterns may open up new avenues for misuse of data and potential manipulation of individuals and their 
behaviour. Big Data is seen as both an opportunity and a challenge. This is especially true for the 
management and governance of transport-related data. 

Transport is a complex activity but at its most basic expression it is simply about connecting locations with 
flows. These locations may be proximate, well-connected and displaying high levels of access – as in many 
urban areas – or not. The flows between these locations may concern people or goods and may involve any 
number of vehicle types – or not, as in the case of walking. 
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Resolving the location-flow equation requires delivering and managing the use of infrastructure assets such 
as roads, bridges, tracks, airports, ports, bus stations and cycle paths – but it may also involve decisions 
regarding where to site activities so that the need to move is obviated. All of these decisions require 
information – a lot of information – regarding places, people and activities. Big Data holds much promise 
for improving the planning and management of transport activity by radically increasing the amount or 
near-real-time availability of mobility-related data. Likewise, access to more detailed and actionable data 
regarding the operation of vehicles and of the environment in which they operate holds much promise for 
improving the safety of transport. 

These three fields – operations, planning and safety – are areas where authorities must critically evaluate 
where and how new, or newly available data and data-related insights, can improve transport policy. 

 
Figure 1.  Data size scale 

Source: Nokia HERE, Forbes, Idealab, GE, ITF calculations. 
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2. The Big Data lifecycle 

Big Data broadly refers to extremely large data sets now able to be acquired, stored and interpreted 
through modern technology. While no broadly agreed definition exists for big data, it is commonly 
understood to qualify datasets too large to be contained or processed using the resources of a typical 
personal computer or the analytical capacity of commonly used spreadsheet applications. 

Volume is only one attribute of Big Data. Other significant attributes include velocity (the speed at which 
data is collected and processed) and variety (the range of structured and unstructured elements that 
comprise the data sets). Overall, volume, velocity and variety are typically used to differentiate Big Data 
from other data. However, it is important to understand that these are purely descriptive terms. They do 
not capture the fundamental changes that have occurred in recent years that have given rise to such large 
and exploitable data sets. 

Big Data – in transport and elsewhere – has emerged from the convergence of rapidly decreasing costs for 
collecting, storing and processing, and then disseminating data. Decreasing costs for sensors has led to a 
proliferation of sensing platforms transforming large swathes of the analogue world into digitally processed 
signals. Decreasing data storage costs have allowed the retention of data that had previously been 
discarded. As noted by science historian George Dyson “Big Data is what happened when the cost of storing 
information became less than the cost of making the decision to throw it away." (Dyson, 2013) 

 

Figure 2.  Hype cycle for emerging technologies (2013) 

 

Source: Gartner Research. 
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At the same time the advent of inexpensive, often open-source analytical software has democratised access 
to cost-effective and near real-time processing and analysis of large, high-velocity and high variance data 
sets (Asslett, 2013). 

As a term, Big Data is relatively recent. Yet it has already generated considerable interest and discussion, 
including in the field of transport. While strong interest is generally seen as a positive the enthusiasim or 
“hype” for a new technology can go too far and lead to inflated expectations. Big Data is nearing the apex 
of such a “hype” curve (Figure 2) and it remains to be seen how relevant, robust and perennial a concept it 
proves to be for mobility-related data. 

Big Data is not a singular construct; rather, it is a process spanning data acquisition, processing and 
interpretation (see Figure 3). This lifecycle of Big Data is described in the following sections.     

Data acquisition and recording 
People increasingly leave a digital trace wherever they go (both voluntarily and involuntarily). The 
technology utilized in each phone call, text message, email, social media post, online search, and credit 
card purchase and many other electronic transactions reports on the user’s location at a given point in time. 
This data is then relayed to the central servers of the service providers that enable these actions. When 
cross-referenced with the geographical terrain, data harnessed at this scale offers a means of 
understanding, and responding to, the urban dynamics of the city in real-time. Making sense of this data, 
especially for policy, requires familiarity with the technical aspects of data production methods as well as an 
understanding of how, or from whom, the data is sourced. We address these issues in the following 
sections. 
 

Figure 3.  Big Data collection and analysis lifecycle 

 

Data production: Digital vs. analogue 
In general terms, data may be either be “born digital” or “born analogue”. (PCAST, 2014) “Born digital” 
data is created by users or by a computing device specifically for use in a machine processing environment. 
Examples of “born digital” data include (PCAST, 2014): 
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 Global Positioning System (GPS) or other geo-localised spatial data stamps. 

 Time stamps and process logs. 

 Metadata regarding device identity, status and location used by mobile devices to stay connected 
to various networks (GSM, Wi-Fi, etc). 

 Data produced by devices, vehicles and networked objects. 

 Public transport card tap-ins or swipes and other data associated with portal access (badge, key cards, 
RFID tags) or cordon passage (e.g. toll roads, congestion charging systems, etc). 

 Commercial transaction data (credit card use and transaction records, bar-code and RFID tag reading, 
etc.). 

 Emails and SMS, metadata relating to phone calls. 

“Born digital” data is produced by design to address one or a series of specific needs. Efficiency 
considerations has meant that only the specific data required for a process was generated and retained, in 
order to avoid straining storage and processing capacicity or inflating costs. However, the drop in 
processing and storage costs effectively means that over-collection of data (beyond the stated initial 
purpose for data collection) is easily possible and has a near zero real cost.  

“Born analogue” data is data that arises from an imprint of a physical phenomenon (light, sound, motion, 
presence of a chemical or biological compound, magnetic impedance, etc) upon a sensing device, and its 
subsequent conversion into a digital signal. Sensors may include cameras, microphones, magnetic field 
detecting devices, heart rate monitors, accelerometers, thermal sensors, etc. Costs for sensors have 
decreased sharply contributing to a rapidly pervasive sensing environment.  

Examples of “born analogue” data include:  

 Video streams from surveillance, in-vehicle, roadside or other cameras. 

 Audio content of voice phone calls, ambient audio from video cameras or microphone networks. 

 Motion/inertia (accelerometers, ultrasonic sensors), heading (compass), temperature, infrared 
radiation, electromagnetic fields, air pressure etc. 

 Data relating to heartrate, respiration, gait, and other physical and health parameters. 

 Electromagnetic or light (laser) reflectance of objects (e.g. synthetic aperture radar –SAR or laser-
based LIDAR systems). 

With the proliferation of sensors some may suggest “born analogue” data is rapidly expanding to 
encompass all potential observations, both now and into the future. However, two filtering mechanisms 
operate at the initial stage of data collection that limit the scope of data acquired. The first filter is the 
design specifications (and therefore limitations) imposed on any sensor or recording device. For example, 
due to their design specifications a heat sensor will not record audio signals while an accelerometer will not 
record geographic coordinates. Nevertheless, the ability to infer one phenomenon from the observation of 
another is constantly evolving. For instance, research into the electromagnetic interference (which road 
authorities have tried to shield roadside data transmission cables from) has shown that the data produced 
by the interference can be used to infer vehicle movements and provide traffic counts.  

The second operative filter relates to the observation rate of sensed or monitored events versus the rate of 
data retention and transmission. For instance, engine sensors in a commercial aircraft may process up to 
10 terabytes of data per 30 minutes of flying time but most of this data is discarded as soon as it is used. 
Rates of data retention are orders of magnitude lower and the amount of data transmitted during flight 
even lower still. Much sensed or generated data is rapidly discarded and what is left may be filtered and 
compressed before being treated and used. However, the potential value of sensed data may not be 
recognised at the system design phase. There is a need to ensure filters or compression algorithms do not 
discard potentially useful information. 
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Filtering and compression-linked data loss is becoming less of an issue with the advent of lower cost data 
storage and transmission technologies, coupled with state-of-the-art database platforms such as Hadoop 
(see Box 1 on Big Data core technologies). These changes, in addition to growing sophistication of, and 
decreased costs for, dual sensor-computing devices, increase the relevance of retained data. Sharply 
dropping sensor costs and size, improved sensor performance, lower data storage costs and improved 
relevance of retained data all contribute to the large-scale increase of exploitable data. However, as noted 
by the Community Computing Consortium, challenges remain: 

“One challenge is to define these filters in such a way that they do not discard useful information. For 
example, suppose one sensor reading differs substantially from the rest: it is likely to be due to the 
sensor being faulty, but how can we be sure that it is not an artefact that deserves attention? In 
addition, the data collected by these sensors most often are spatially and temporally correlated (e.g., 
traffic sensors on the same road segment). We need research in the science of data reduction that can 
intelligently process this raw data to a size that its users can handle while not missing the needle in 
the haystack. Furthermore, we require “on-line” analysis techniques that can process such streaming 
data on the fly, since we cannot afford to store first and reduce afterward.” (Community Research 
Association, 2012) 

In general, the literature on Big Data classifies sources under three broad categories: opportunistic sensing, 
purposely sensing and crowdsensing. Opportunistic sensing leverages data running on existing systems, 
such as a telecommunication network, but can be used to better understand mobility. In other terms, data 
is collected for one purpose and used for another. This approach to data collection is made possible largely 
by widespread use of mobile phones (ITU, 2014) – citizens replace the need for purpose-built sensors, 
contributing real-time data through their portable devices. Other typical data providers include credit card 
companies recording user transaction and taxi fleets reporting vehicle GPS. 

The potential of opportunistic sensing is furthered by recent, and forecasted, increases in the sample size, 
reporting frequency and processing power of existing networks. Previously, mobile phones generated data 
only when calls were made. Today, with the transition to smart phones, time and location is communicated 
to service providers every time a text or email is sent, a photo is uploaded or on-line purchase is made. By 
2020, more than 70% of mobile phones are expected to have GPS capability. (McKinsey Global Institute, 
2011) 

Mozilla, the free software community which produces the Firefox web browser in partnership with Chinese 
chip maker Spreadtrum, has prototyped a low-cost smartphone device aimed at the developing world for 
USD 25. (Spreadtrum, 2013) The smartphone will be able to run simple apps and make use of mobile 
Internet, empowering citizens across social classes with more data producing and receiving capabilities. 
Furthermore, advancements in telecommunication technologies and data connectivity will lead to better 
access to real-time updates. When triangulated with signals from several towers, callers can be located 
within a few dozen metres. (European Commission, 2011) 

Of the data types associated with opportunistic sensing, McKinsey’s 2011 report on Big Data emphasises 
the transformative potential of location data from mobile phones for transportation applications. The 
traditional means of studying city dynamics, such as census surveys and vehicle counting, are both time-
consuming and expensive. Meanwhile, mobile phone carriers are routinely collecting location data on all 
active users. This offers a valuable means by which to monitor activity patterns frequently, cheaply and at 
an unprecedented scale. (Becker, et al., 2011) Call Detail Records (CDRs) identify the approximate location 
of the caller and receiver at the time of the call through the cell towers carrying their phone signals. Strung 
together over an extended period of time, each recorded location contributes to an observed flow of people 
between different geographical regions, whose precision is tied to frequency of mobile phone use. More 
accurate still, data from smartphones equipped with GPS and Wi-Fi are able to locate the user within five 
meters. 
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In contrast to opportunistic sensing, purposely-sensed data sets are derived from ad hoc sensor networks 
configured to study a specific phenomenon. Due to advances in microelectronics sensors and computation 
are becoming increasingly affordable and widely distributed, a phenomenon often referred to as “smart 
dust”. Hence, networks of remote sensing agents can now be embedded in the city fabric to extract large 
amounts of information. This data is channeled to central control stations where it is aggregated, analysed 
and used to make decisions on how the monitored terrain should be regulated and actuated. (Ratti & 
Nabian, 2010) Here, the resulting data sets tend to be more uniform, and the stated use and actual end-
use scenarios are better aligned to decode various flows within the city. 

Transportation systems that make use of information from cameras and microcontrollers to optimise public 
transit, monitor the environment and run security applications are known as intelligent transportation 
systems (ITS). In general, information for ITS is extracted from two types of customised sensor networks  
fixed sensor agents and dynamic probes, e.g. mobile sensors. (Calabrese, et al., 2011) 

Box 1.  Big Data core technologies 

Big Data draws on a range of technologies and system architectures that are designed to extract social or 
economic value from high velocity, large scale and extremely diverse and heterogeneous data streams. 
(Cavoukian & Jones, 2012) At their core are four interlinked technological developments. 

Ubiquitous data logging and sensor platforms 
Extensive software event logging (and storage) and the deployment of millions of sensing devices enable the 
real-time production of petabytes of data globally. 

Real-time in-stream data analysis 
Sophisticated algorithms and distributed computing capacity (often hard-wired to sensor platforms) enable the 
real-time parsing and analysis of data as it is produced. In-memory analysis is especially useful for extracting 
relevant data from unstructured analogue video or audio streams (see below). 

New analytic frameworks 
New techniques have emerged that allow efficient processing of very large data sets within the constraints of 
available runtime computing capacity. Many of these techniques have been released under open-source 
licenses free of commercial rights. This has greatly accelerated their uptake. Map-reduce work processes (such 
as Hadoop or its derivatives) leverage parallel processing by breaking up large and complex semi-structured 
and unstructured data sets into more manageable subsets. They then allocate coordinated processing tasks to 
multiple distributed servers. These algorithms are fully scalable and are not bound by having to formalise 
database relationships ahead of storage and analysis. They can be applied to directly to the data, irrespective 
of size, format and complexity. Nonetheless, they may not be sufficiently reactive to use in the context of in-
stream data analysis. Other approaches have emerged that are specifically geared to the analysis real-time 
streaming data and involve some form of in-memory processing (that is, analysis occurs without data storage). 

Advances in data storage 
Dropping data storage costs have increased the ratio of retained to generated data. This data includes 
information that, in the past, had seemed insignificant or trivial (e.g. “digital dust”) and was therefore 
discarded. However, when analysed by sophisticated algorithms or merged with other sources of contextual 
data, “digital dust” may provide important new insights. This data is increasingly being stored remotely (away 
from the systems that produce it) in data centres that may even be in another jurisdiction. Related to the 
development of remote data centres is the emergence of “cloud” computing capacity that can be used to 
analyse large and real-time data sets. The “cloud” refers to remote data storage centres as well as the suite of 
data transfer and networking protocols that allow access to and analysis of distributed data as if it were located 
on a single server. Not only does “cloud computing” deliver economies of scale in relation to data storage, 
management and support costs, it also opens up new possibilities for ad-hoc and customisable access to 
computing capacity on public cloud-based platforms (e.g. Amazon Web Services, Google Cloud Platform, etc.) 
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In fixed sensor agents, location coordinates are linked to the identification code of the sensor transmitting 
the data. Mobile sensors, on the other hand, include updated location coordinates with each transmission. 
Both sensor types can be configured to transmit information at predefined intervals, or to respond to 
requests for data from the central server. (Ratti & Nabian, 2010) 

Fixed sensors are permanently installed and monitor the real-time dynamics of the surrounding terrain, 
such as the speed at which vehicles are travelling, distance between vehicles, road surface conditions and 
CO2 emissions from car exhausts. They can be hard-wired or wireless and range from roadside traffic 
cameras connected with optical fibres buried underground, to sensors that operate over radar, ultrasound, 
or infrared (e.g. tyre overheating). Sensors that are inductive, piezoelectric, or magnetic can be laid under 
the road. For example, loop detectors embedded in the pavement report on traffic flow through 
perturbations in circuit conductivity caused by vehicles passing overhead. In each case, sensors are 
equipped with a control unit, battery system, solar panel and transmission system. 

Location-based data accounts for most of the information derived from sensors capable of probing the 
terrain. The most common example being Global Positioning System (GPS) receivers. GPS-enabled vehicles 
periodically report their position and the time the message was transmitted. GPS units derive velocity and 
direction of movement from two or more position measurements. The receivers use a control unit and 
transmission system to relay this information to a central server via text message or transmission of data 
packets. Once collected, GPS data needs to be carefully processed to account for communication delays, 
and extract accurate timestamps for each location reading. 

Both fixed sensors and GPS receivers are limited by the considerable investment required to embed and 
maintain the sensing agents. In order to achieve sufficient sensing capability, these sensors must be 
deployed on mass. In the case of GPS receivers, their ability to accurately estimate traffic conditions is tied 
to the density of vehicles reporting on a given area. As the number of probes increase, transmission cost to 
the central system can become high. The transmission costs associated with wired fixed sensors are 
especially high given they must be strung together as part of a larger network in order to produce a 
complete view of mobility conditions in a city, and the cable infrastructure required to connect each one 
with the central collecting point is expensive. 

The constraints outlined above have deterred many municipalities from investing in sufficient monitoring 
systems required to process purposely-sensed information at the city scale. This is particularly true for 
large urban areas consisting primarily of smaller streets. Instead, their application is often limited to select 
locations such as highways, major urban corridors and large intersections. (Calabrese, et al., 2011) One 
notable exception to this trend is the City of Rio de Janeiro (see Box 2). 

The Rio de Janeiro Operations Centre uses mobile application to warn citizens about heavy rain, strong 
wind, fog, energy shortages, traffic signal malfunctions, mudslides, fire, smoke and points of flooding It also 
receives information from the public. On an average day, Rio’s transportat planners receive aggregated 
views from 110 000 drivers and reports on 60 000 traffic incidents. Since 2013, Rio de Janeiro has been the 
first city in the world to collect real-time data both from drivers who use Google’s navigation application 
Waze, and pedestrians who use the public transportation app Moovit. The crowd-sourced data is overlaid 
with real-time information from various sensors and cameras. In the future, the city plans to start 
monitoring how cyclists move around the city using cycling app Strava. (Forbes, 2014b) 

Google Waze crunches a continuous stream of traffic data from its community to propose what it recognises 
as the fastest route to the destination. Like TomTom or Google Maps, the app provides users with step-by-
step directions to the selected destination. Waze’s map differs in its ability to integrate user-generated 
content. Individuals submit incident reports that mark the precise location of the accident, traffic jam and 
any other driving hazard. As with many crowd-sourced apps, its success depends on the volume of users; 
and hence, is more reliable in dense urban areas than in rural ones. 
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Box 2.  Rio de Janeiro Municipal Operations Centre 

After a series of floods and mudslides claimed the lives of 72 people in April 2010, city officials recognised  
the need to overhaul city operations more significantly in preparation for the 2014 World Cup and Olympics  
in 2016. (United States Environmental Protection Agency, 2014) In collaboration with IBM, the City of Rio de 
Janeiro launched the Rio de Janeiro Operations Centre (ROC) in 2010 with the initial aim of preventing deaths 
from annual floods. This centre was later expanded to include all emergency response situations in Rio de 
Janeiro. 

In traditional applications of top-down sensor networks, data from each department operates in isolation.  
However, ROC’s approach to information exchange is based on the understanding that overall communication 
channels are essential to getting the right data to the right place and can make all the difference in an effective 
response to an emergency situation. The information-sharing platform they created enables them to tap into 
various departments and agencies, and look for patterns across diverse data sets to better coordinate 
resources during a crisis. 

The centrally located facility surveys 560 cameras around the city and another 350 from private sector utility 
concessionaires and public sector authorities (Centro de Operações da Prefeitura do Rio de Janeiro, 2014). The 
incoming feeds are aggregated on a single server and displayed across a 80-square meter (861 square feet) 
wall of tiled screens – a smart map comprised of 120 layers of information updated in real-time such as GPS 
tracking of buses, city officials and local traffic. With over 400 employees working in shifts 24 hours per day, 
seven days a week ROC performs a variety of functions aimed at improving the efficiency, safety, and 
effectiveness  of relevant government agencies in the city. While much of the attention paid to the centre 
focuses on emergency monitoring and response, especially related to weather, a significant portion of the work 
undertaken relates to ensuring the smooth functioning of day-to-day operations like transport.or example, 
through the centre, Companhia Municipal de Limpeza Urbana (municipal waste corporation) can monitor where 
its trucks are and better sequence trash collection, minimising fuel consumption and improving waste 
management services (US Environmental Protection Agency, 2014). 

IBM has created similar data centres elsewhere in the world for single agencies (such as crime centres for New 
York and Madrid, and a congestion fee system for Stockholm) but ROC is the first application of a citywide 
system to integrate all stages of crisis management from prediction, mitigation and preparation, to immediate 
response. In Rio de Janeiro, the centre gathers data from 30 government departments and public agencies – 
water, electricity, gas, trash collection and sanitation, weather and traffic monitoring – in real-time through 
fixed sensors, video cameras and GPS devices. Data fusion software collates this data using algorithms to 
identify patterns and trends, including where incidents are most likely. (Open Data Research Network, 2014) 

In a statement on the use of sensor-based systems to correlate situational events with historical data at their 
Intelligent Operations Centre for Smarter Cities, IBM’s Director of Public Safety explained “The aim is to help 
cities of all sizes use analytics more effectively to make intelligent decisions based on better quality and 
timelier information. City managers can access information that crosses boundaries, so they’re not focusing on 
a problem within a single domain. They can start to think about how one agency’s response to an event affects 
other agencies”. (Yasin, 2011) In every city, the complete story cannot be told by traffic figures and 
meteorological data alone. To fully assess a crisis situation, the voice of the people must be heard. Each 
urbanite can be thought of as a human sensor, capable of reporting on their experience of the city through 
content sharing platforms such as Flickr, Twitter, Facebook or Wikipedia. (Ratti & Nabian, 2010) These actions 
offer a unique view on how people navigate their environment, bringing clarity to points of attraction or 
spontaneous migrations. This approach describes the third data source known as crowdsensing. 
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Figure 4.  Views of Waze, a community-based traffic and navigation application  
(interface showing the reported incidents and traffic suggestions)  

 
 

Source: Google Play. 

Need for transparency and metadata on data provenance 
Transparency regarding the nature of data and the conditions under which it was collected is crucial for 
data-driven transport policy making. In this respect, the initial recording and subsequent preservation of 
metadata plays an essential role in enabling data interpretation and re-interpretation. This metadata may 
include information on data structure, the context in which it was collected and how it was generated (e.g. 
its provenance). For sensor-based data, provenance data is especially important as the type of sensor 
platform may affect the representativeness of the data produced (see Box 3 on current shortcomings in Big 
Data analytics).  

For instance, if a traffic data source is a network of embedded loop detectors, it becomes important to 
account for the sometimes significant portion of detectors that may be offline or that consistently give 
implausible and possibly incorrect readings. Likewise, accounting for smartphone or app penetration rates 
across demographic segments becomes important when analysing smartphone or app-sourced data for 
designing public transport services. Ensuring a non-degradable provenance metadata is especially 
important for fused data sets whose analysis will depend on understanding the nature of all of the 
component data streams. However, the more detailed the provenance metadata (e.g. down to a single 
identifiable sensor) the more difficult it becomes to manage privacy issues. 
 

Box 3.  Current shortcomings in Big Data analytics 

Proponents of Big Data-driven analysis have predicted that: 

“In the next two decades, we will be able to predict huge areas of the future with far greater 
accuracy than ever before in human history, including events long thought to be beyond the 
realm of human inference. The rate by which we can extrapolate meaningful patterns from the 
data of the present is quickening as rapidly as is the spread of the Internet because the two are 
inexorably linked. The Internet is turning prediction into an equation… as sensors, cameras, and 
microphones constitute one way for computer systems to collect information about their—and 
our—shared environment, these systems are developing perceptions that far exceed our own.” 
(Tucker, 2014) 
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Massive and near real-time data sets, often based on ubiquitous sensing, are so large that they may seem to 
mimic reality. Just knowing there is a link between two or more observable variables and an outcome may be 
sufficient to predict the frequency of that outcome in the future. All that is needed is an algorithm that 
consistently detects patterns in the data. In this view of Big Data analytics the need for classic statistical tests 
regarding bias and validity or explanatory theories and models would be eliminated. The data could already be 
assumed to be an accurate representation of reality. However, this is an overly reductive viewpoint. 
Furthermore, some early successes in Big Data analysis based on this assumption have failed to provide robust 
predictive results over the long term.  

Observers have pointed out that “there are a lot of small data problems that occur in Big Data” (Harford, 2014) 
and that a theory-free approach to analysing Big Data does not make these go away – in fact, it makes them 
worse. Big Data has not emancipated analysts and policy makers from the strictures of statistical rigor since Big 
Data is not only prone to many of the same errors and biases in smaller data sets, it also creates new ones. 

Causality, correlation and multiple correlations  
Big Data analytics are well suited to the discovery of correlations that were not obvious, or even visible, in the 
data initially. This is where “letting the data speak” is the most effective method of providing new insights. 
Correlation and causation are two different things and though correlative variables may reveal the possibility of 
a causal relationship in the data, they do not explain which correlations are meaningful or predictive. For 
example, combining low granularity hospital data with geo-localised patient data, traffic flow data and digital 
maps may reveal that living close to busy urban roads correlates with early mortality. A logical assumption 
would be that this was due to exposure to air and noise pollution. However, property values adjacent to busy 
urban roadways may be low and the population living in these areas may have low incomes. These two 
variables may correlate closely with a number of risk factors (diet, exercise, smoking) that contribute to early 
mortality. Without a more detailed understanding of the causes of death, authorities may find that policy efforts 
to reduce pollution (or traffic) may not necessarily reduce early mortality along these corridors. Furthermore, 
Big Data analytics may amplify the importance of spurious correlations due to the extremely large volumes of 
data processed. While Big Data analytics are suited to “letting the data speak”, understanding what exactly is 
being said calls for human interpretation. 

Even if a correlation may prove to be robust over a given period, Big Data analytics alone cannot provide 
insight into what might cause the correlation to break down – nor what pattern may emerge in its place. This is 
a second critique of Big Data-led analytics – they can often be helpful in examining fairly common occurrences 
but have difficulty in handling less common or outlying events. 

Differential smartphone penetration bias in Washington, DC 
(visualised through geo-referenced tweets)  

 
Source: https://www.mapBox.com/blog/visualising-3-billion-tweets/ 
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Bias and representativeness 
A third critique of Big Data analytics is that the existence of massive data sets does not eradicate traditional 
statistical traps – especially those of sample bias and sample error.   

Claims relating to the ubiquity of sensor networks and other sources of Big Data are often exaggerated or 
ignore specific and consistent sources of bias that may be relevant for policy analysis. For example, use of 
smartphone-sourced location data may be subject to biases that result not only from differential rates of 
smartphone penetration amongst different demographic groups (e.g. the very young and the old, high income 
vs. low income) but also to differential rates of penetration of operating systems amongst the population of 
smartphone owners.  

Analysis of geo-tagged tweets reveals a stark segregation between iPhone and Android users in many locales 
(as in illustrated in Figure of Washington, DC). These differences may correlate to income or race (or both) and 
may have real consequences when considering the use of smartphone-sourced location data. An iPhone-only 
app, for instance, that provides authorities with automatic pothole detection reports based on signals from the 
phone’s accelerometer and other sensors would direct authorities to repair potholes only in those areas with 
high levels of iPhone ownership. In the case of Washington, this would ignore nearly half of the city’s roads. 

In another example, biases may emerge from volunteered location data due to specific characteristics of app-
users versus the general population. Strava, for instance, is an app that started as a way for cyclists and 
runners to compete against each other’s times on defined segments. It has amassed a very large data set of 
geo-localised tracks matched with user profiles (77.7 million bicycle rides, 19.7 million runs, 220 billion GPS 
data points) around the world based on self-reporting by app users. It markets this data (under the Strava 
Metro product) to planners and city authorities to help shape urban transport policy. Strava claims a 40% share 
of commuting routes in its data. However, it seems reasonable to expect, given the app’s stated purpose, that a 
bias in favour of recreational cyclists’ and runners’ route preferences may exist, though Strava claims a 40% 
share of commuting routes in its data. A potential secondary bias may also emerge due to the type of bicycle 
commuter most likely to use the Strava app (e.g. more competitive, longer-distance commuters). 

Potential representativity bias: Copenhagen cycling 

 
Source: engineering.strava.com 
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Data extraction, cleaning, annotation and storage 
Beyond questions of availability and collection costs, an important factor to consider when selecting a data 
source is its fitness for analysis. Data analytics refers to all the ways in which information is extracted from 
a given data set. Once parsed into relevant fields (e.g. origin and destination time, longitude and latitude), 
a series of operations can be performed to clean, transform and model the data in pursuit of meaningful 
conclusions. 

A range of techniques and tools have been developed, or adapted, to aggregate, manipulate and visualise 
Big Data. These draw on expertise from a number of fields including statistics, computer science, applied 
mathematics and economics. This both adds to the challenge of making Big Data accessible and highlights 
the need for a multidisciplinary approach. 

Within the context of transportation planning, spatial analytics typically extract the topological, geometric, 
or geographic properties encoded in a data set. Across the various case studies related to mobility, the 
techniques for data analysis can be grouped into, but are not limited to, the following categories (McKinsey 
Global Institute, 2011): 

 Data fusion: techniques to consolidate data produced by multiple sources, such as location data 
produced by mobile phones and GPS-enabled vehicles. 

 Data mining: techniques to extract patterns from large data sets, such as the relationships between 
discrete nodes in a transportation network. 

 Optimisation: techniques to reorganise complex systems and processes to improve their performance 
according to one or more parameters, such as travel time or fuel efficiency. 

 Visualisation: techniques used for generating images, diagrams, or animations to communicate the 
results of data analysis, such as traffic maps. Visualisation techniques are used both during and after 
data analytics to make sense of the information. 

An important factor to consider when selecting a data source is the scope and quality of the resulting data 
set. Data extracted from a single source is generally considered clean and precise. However, meaningful 
analysis of a single source depends largely on the generating system’s ability to serve as a proxy for the 
phenomenon of interest. The reality is that data is often “messy”, in that it is heterogeneous, “dirty” 
(includes incorrect, mislabelled, missing or potentially spurious data) and, in its native format, is 
incompatible with other data sources. Part of the challenge lies in the fact that some data may be highly 
structured (for example, GPS latitude and longitude data and commercial transaction data) facilitating rapid 
analysis while other data may comprise highly unstructured data sets (emails, social media content, video 
and audio streams) and therefore be more difficult and time consuming to analyse. Advances in data 

This potential for bias can be seen in Strava’s mapping of Copenhagen (figure above), a city with very high 
levels of utilitarian cycling. Here Strava accentuates slightly different routes than the city’s own bicycle traffic 
survey (especially the route running from the northwest to the southeast). Strava routes are likely used by 
recreational and sports cyclists on training rides rather than shorter-distance utilitarian cyclists. Likewise, 
Strava seems to under-represent short-distance bicycle trips in the city centre. Without further contextual data 
on the population generating the data – and especially the population of cyclists and pedestrians not using the 
app – city planners would be hard-pressed to formulate sound policy recommendations. 

The use of Big Data by policy-makers should be assessed according to the specific concerns at hand and the 
level of knowledge relating to a problem to be addressed. For well-defined challenges where many variables 
and their inter-relationships are understood, small, carefully stratified and representatively sampled data may 
be as, and perhaps even more, effective at finding solutions than the use of Big Data. However, for situations 
where knowledge is low, Big Data analytics may help elucidate relevant questions to ask and identify potential 
new directions for policy.  
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processing and analysis techniques allow the mixing of both structured and unstructured data in order to 
elicit new insights, but this requires “clean” data. 

Cleaning data and preparing it for analytical use is a non-trivial task that may entail significant cost. 
Structured data must be parsed and missing or potentially incorrect data accounted for. Unstructured data 
must be correctly interpreted, categorised and consistently labelled. In some instances, manual “data 
wrangling”, “data munging” or “data janitor work” remains a necessary component of the data collection 
and analysis stream. This work requires a large investment in time and resources – accounting for 50% to 
80% of data scientists’ time according to some estimates. (Lohr, 2014) Data preparation may be greatly 
facilitated by the use of appropriate compensatory algorithms but the choice of algorithm may itself lead to 
imputing or prediction errors if it incorrectly interprets missing values1 or minimises outliers that could be 
important. Just as metadata relating to the data itself may help improve subsequent interpretation, 
metadata regarding data cleaning and correction methods may be equally helpful – within reason, since 
each new metadata element may weigh down data processing speed and efficiency. 

In 2013, the MIT SENSEable City lab looked to data produced by social media platform Twitter to infer on 
global mobility patterns. More specifically, the study extracted GPS coordinates from the mobile devices, or 
IP addresses from the computers, used to send tweets. At present, approximately 1% of tweets can be 
geo-located. (Morstatter, et al., 2013) This is expected to increase dramatically in the coming years due to 
the proliferation of smart devices and mobile applications. Common to both homogenous and fused data 
sets is a cleaning phase’: The data set gathered from Twitter’s Streaming API service was examined for 
statistical errors and artificial tweets; namely for users having relocated at an impossible speed and posts 
made by commercial users who were less likely to reflect human activity. From here, each user’s country of 
residence was identified, based on where they had posted the highest percentage of tweets. All tweets 
made outside of this country would flag the user as a visitor. The resulting network of tweet flows 
suggested country-to-country preferences, as well as peak travel times for residents of a particular country. 
(Hawelka, et al., 2014) 

The major challenge associated with analysing a single source is in going beyond the literal meaning of the 
data to answer more general questions. The Twitter streaming data sets provide an accurate account of 
where a group of subscribers accessed a specific service at a given point in time. However, the resulting 
representations are of limited use in elucidatingwhat influences user flows, such as the motivations behind 
their movement and their preferred modes of travel. 

Integration, aggregation and fusion 
New insights can emerge from the analysis of single data sets but the real potential for new knowledge 
rests on the improved ability to apply analytical methodologies to multiple data sources. 

Data fusion techniques match and aggregate several heterogeneous data sets creating or enhancing a 
representation of reality that can be used for data mining (see Box 4). Data fusion is an especially 
important step in using inputs from multiple sensor platforms. For instance, data fusion algorithms help 
process inputs from wheel movement sensors, accelerometers, magnetometers, cellular signal sensors, 
cameras, laser scanners and GPS chips. All these data sources contribute to creating a precise 
representation of the location of a car on a street. Such data fusion is necessary for the development of 
autonomous driving vehicles. Here, the final representation of a vehicle (e.g. the precise vehicle location, 
size, direction and speed) is all that is retained, thus eliminating the need to store every sensor’s individual 
data stream. Mid-level data fusion methodologies merging structured machine-produced data are relatively 
well advanced. On the other hand, high level data fusion tasks merging multiple unstructured analogue 

                                                 
1 See for example discussion in (Li & Li, 2013) and (Hutchins, 2010). 
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sensor inputs remains challenging and a focus of current research. (Khalegi, et al., 2013) It is this high-
level data fusion capacity – one that starts to emulate human capacities – that will be necessary for the 
large-scale deployment of sensor-centric autonomous vehicles.  

In the case of data integration or aggregation, data sets are matched and merged on the basis of shared 
attributes and variables but the whole of each separate data set is retained. This method is well suited for 
increasing knowledge discovery via the analysis of contextual data.  

 
 

Box 4.  WikiCity Rome case study 

In the WikiCity Rome case study, the real-time visualisation of data mined from communication networks was 
cross-referenced with the geographical terrain. This allowed urban dynamics to be presented in real-time to 
observers. Such technologically enhanced spectacles - real-time infoscapes projected onto architectural 
surfaces, or accessed via worn and handheld devices - provoke a temporary displacement of the observer from 
the physical terrain they inhabit to a distant location, providing them with an overview of the dynamics 
contained within the urban landscape. 

Dynamic map illustrating the levels of activity within Rome during a Madonna concert  
(real-time data created through interpolation of mobile phone usage) 

 

Source: WikiCity Rome, MIT SENSEable City Lab. 

The WikiCity Rome project tapped into aggregated data from mobile phone usage. The resulting visualisations 
depicted the pulse points of the city, providing an overview of how the urban landscape is occupied, and where 
and in which temporal patterns the mobile phone-using crowd is dispersed. Crowdsensing based on mobile 
phone usage allows for spotting the “hot” locations and congested spots of the city in real-time. This can help 
authorities to regulate traffic and the flow of resources within the city, based on real-time dynamics. 

 



24 – 2. THE BIG DATA LIFECYCLE 

BIG DATA AND TRANSPORT: UNDERSTANDING AND ASSESSING OPTIONS - © OECD/ITF 2015 

 

The challenging aspect of data fusion is in the extraction of salient features across multiple data sets 
generated for different uses. In the case of the WikiCity Rome case study (see Box 4), the team at MIT had 
to parse, extract and process the data collected by Telecom Italia, Atac, and Samarcanda. Furthermore, 
they had to do so in real-time so as to contribute to the decision-making process of its users. In order to 
create a dialogue between the different feeds, a common ontology was developed to describe the data in 
terms of the following: 

 Location (coordinates system, latitude and longitude) of the transmitting device or reported action. 

 Time of data transmission or reported action. 

 Data category (location-based mobile phone data, GPS data, news bulletin). 

 Data format (single value, matrix, vector, text, image, etc.) 

 Data representation (e.g. measurement unit). 

 Semantics of the data (e.g. tracking vehicle or mobile phone). 

In general, data fusion techniques aim to fuse accuracy and semantics. Data collected from multiple 
sources often contain inconsistencies in terms of resolution. For example, in the case of WikiCity Rome, 
Telecom Italia’s probes were sampling signal strength every 4.8 seconds, while Atac and Samarcanda’s 
servers received GPS readings at 30-second and 5-minute intervals respectively. Semantics refers to the 
subject being represented. In one case, the data tracks a vehicle; the other follows the initiator and 
recipient of a call. 

Analysis, modelling and visualisation 
One outcome of the availability and relative low-cost of exploiting very large data sets is an evolution in, 
and a broadening of, the analytic techniques used to extract insights from this data. Traditional approaches 
involving statistics or optimisation methods are still relevant but run into data processing limitations when 
considering extremely large and high-velocity data sets2. Other knowledge-discovery approaches including 
data mining (and the contribution of data mining to machine learning, network analysis and pattern 
recognition) and visualisation techniques are more suited to Big Data. 

Data mining 

Data mining approaches differ from traditional database analysis methods in that they do not presuppose a 
model describing relationships in the data nor do they require specific queries on which to base analysis. 
Rather, these approaches let the data speak for itself, relying on algorithms to discover patterns that are 
not apparent in the single, or more often, joined data sets.  

                                                 
2 The fact that traditional statistical approaches are challenged by massive and high-velocity data sets should not discount the fact 

that statistical principles – especially in relation to data representativeness and bias – remain very relevant for Big Data 
applications (see Box 3). 

When the system was exhibited at the 10th International Architecture Exhibition of the Venice Biennale, 
researchers at MIT SENSEable City Lab supplemented the mobile phone-based evaluation of urban dynamics 
with data based on the instantaneous positioning of buses and taxis. This provided real-time information about 
mobility, ranging from traffic conditions to the movements of pedestrians throughout the city. The visualisations 
provided a qualitative understanding of how the aggregated data of network mobile phone usage and public 
transit location information can be used to provide valuable services to citizens and authorities. Such 
information “can give city dwellers a deeper knowledge of urban dynamics and more control over their 
environment by allowing them to make decisions that are more informed about their surroundings, reducing the 
inefficiencies of present day urban systems”. (Calabrese, et al., 2011) 
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Data mining algorithms perform different types of operations (PCAST, 2014):  

 Classification, where objects or events are classified according to known categories (e.g insurance 
companies employ classification algorithms to assign crash risk categories to drivers sharing certain 
characteristics). 

 Clustering, where patterns of similarity are sought in the raw data. 

 Regression or numerical prediction, where numerical quantities are predicted according to regression 
analysis. 

 Association, where relationships between items in single or joined data sets are identified. 

 Anomaly detection, where outliers or pattern breaks in data sets are identified. 

 Summarisation, tabulating and presenting salient features within data sets. 

Data mining approaches can be based on examples of relationships that provided by human operators and 
are used to guide the process or via unsupervised operation where patterns are discovered algorithmically. 
Especially in the latter case, the relationships exposed amongst data elements are correlative – that is, 
patterns are revealed but not their value or significance. 

Modelling 

Building and running models helps test hypotheses regarding the impact and importance of different 
variables in real-world systems. By simplifying simulating real-world phenomena, models help to 
characterise, understand, quantify and visualise relationships that are difficult to grasp in complex systems. 
Building models require data on baseline conditions and insight regarding the nature of relationships, either 
correlative or causal, between multiple phenomena. The arrival of Big Data has drastically increased the 
scale, scope and accessibility of modelling exercises though it should be noted that ability of these to 
accurately track the real world is linked not just, or even principally, to the quantity and quality of baseline 
data. Model construction and ensuring the right questions are asked remain essential to provide high-value 
outputs. Well-constructed models built on sparse data may be as or more effective than poorly designed 
models working on massive, real-time data sets. 

With this caveat in mind, Big Data sources and techniques have allowed for novel models to be constructed 
that provide new questions to be asked and new insights to be derived – as in the case of the recent 
HubCab initiative carried out by the MIT SENSEable City Lab in partnership with Audi and General Electric 
(GE). 

HubCab analyses taxi trips to explore the benefits and impacts of vehicle sharing in New York city. The data 
was derived from the records of over 150 million trips made by 13 586 registered taxis in Manhattan during 
2011. (Santi, et al., 2014) The GPS-enabled taxis reported on the geographic coordinates (longitude and 
latitude) and time of each trip’s origin and destination, creating a map of pick-up and drop-off points. 

When applying geospatial analysis and modelling techniques to this data, the monitored terrain is either 
broken into points, lines or polygon boundaries. (de Smith, et al., 2013) Using OpenStreemap, the HubCab 
team drew an open-licensed world map to obtain the outline of streets. These were then cut into over 
200 000 segments of 40-metre lengths. Once footpaths, service roads and other street types unlikely to 
receive taxi traffic were removed, over one trillion possible routes were identified. 

The resulting data set could be used to study more conventional queries, such as the location of the nearest 
taxi or most efficient route for a single trip. The innovative aspect of the HubCab project, however, is in its 
capacity to model and optimise trip-sharing opportunities through what is referred to as the “shareability 
network” (see Figure 5). At a conceptual level, this involves building a network of links between nodes. In 
the HubCab initiative the nodes represent individual taxi trips and the links connect trips that can be 
combined. Taxi routes are recalculated in real-time to pick up new passengers based on their current 
location and desired destination. (Santi, et al., 2014) 
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Figure 5.  Optimisation strategy for taxi sharing  

 

Source: Santi, et al., 2014. 

Conclusions drawn from this exercise point to the potential impacts of taxi-sharing both at the level of the 
city and of the individual. In cities like New York, taxi services account for a major share of individual 
mobility. Hence, reducing the number of taxi trips would lead to dramatic reductions in air pollution and 
traffic congestion. In the analysis performed by the MIT SENSEable City Lab, substantial benefits were 
observed in triple trip sharing models over double trip sharing. Logically, the environmental gains 
associated with reducing the number of taxi trips by a factor of 3 are greater than those achieved by 
reducing by a factor of 2. However, trip sharing equates to longer wait times at pick-up points and less 
direct routes to individual destinations. The viability of the triple trip sharing solution depends largely on 
patient customers. This raises the question of whether cities like New York might push for fare systems that 
incentivise patience. 

Visualisation and dissemination 

The immediate outcomes exhibited in the WikiCity Rome and HubCab examples are interactive maps that 
invite people to engage with mobility patterns shaped by their surroundings. The power of these 
visualisations is in their ability to inspire action from the most cost-effective and readily available urban 
actuators: citizens. Observing the real-time city becomes a means for people to understand the present and 
anticipate future urban environments. This could result in users electing to share a cab with a stranger to 
save on the cab fare or changing their mode of transport to avoid traffic congestion. On an urban scale, 
information delivery platforms capable of combining layers of information in a comprehensible manner can 
increase the overall efficiency and sustainability of city planning and regulation. 

For centuries, humans have relied on the graphical or pictorial representation of data to make records of 
information accessible, comprehensible and, most importantly, appealing to the human mind. 
Consequently, the recent explosion of data has also seen a rise in tools focusing on effectively visualising 
that data. Many tools excel in depicting information using traditional methods like tables, histograms, pie 
charts and bar graphs. But bar charts couched in lengthy documents or slide presentations are often not 
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adapted to an audience beyond professionals. As data sets gets larger and efforts to exploit this data seeks 
to reach more people, the language of data visualisation must adapt and improve. 

Citizens are living in an increasingly visual world, peering into screens of different sizes with incrementally 
superior resolutions with every device upgrade. As visual literacy rises, more professionals will be expected 
to know the language of data visulation. Visualisations – like the one of New York City taxi trips in Figure 6 
- serve not only for information delivery but also for generating interest and making an impact – they are 
presentations of information framed at the convergence of art, digital media and information technology. 

 

Figure 6.  Pick-up and drop-off points of all 170 million taxi trips over a year in New York City 

 
Source: MIT SENSEable City Lab. 
 

The application of real-time visualisation tools to study traffic congestion has increased in recent years in 
response to the availability of data collected by traffic management centres and telecommunication 
companies through daily operations. Perhaps the best-known examples are online map services (Baidu, 
Bing, Google, Here, Naver, etc). These services use color-coded paths to indicate traffic speeds derived 
from road sensors and GPS-enabled vehicles and mobile devices. The more recent Google Waze maps out 
traffic incidents and other hazards reported by its 50 million users. (Forbes, 2014a) 

In 2014, the researchers at MIT SENSEable City Lab sought to move beyond linking traffic accidents to 
congestion towards more predictive visualisation tools for traffic management centres. Their “Traffic 
Origins” study introduces time-lapse visualisations to observe how congestion propagates from a point 
source, or, when used in after-action reviews, to understand the effectiveness of mitigation measures. 
Despite having targeted expert users, the study emphasises the effectiveness of simple, aesthetically 
pleasing visualisations to communicate complex relationships to both traffic controllers and laypersons. 
(Anwar, et al., 2014) 
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Figure 7.  Traffic incidents visualised using the Traffic Origins approach 
(Expanding circles indicate incidents and the surrounding traffic conditions) 

  
Source: Anwar, et al., 2014. 

The next generation of visualisation tools for mobility applications should have a new visual language for 
data. This language should ot only be scientific, but also accessible, communicative and compelling. Ideally 
the tools should include the following capabilities: 

 Geo-spatial: plotting data on customisable maps with additional geographical information. 

 Time resolution: observing hourly, daily, weekly etc. patterns by easily switching between different 
time resolutions. 

 3D: data depicted as 3D objects on a 3D globe for an immersive experience. 

 Animation: free navigation to different periods of time in the data and comparison capabilities. 

 Interaction: ability to pan or zoom to particular points and interact with them to display additional 
information. 

These tools should be built to serve as a visualisation platform for experts and the average person alike – 
a knowledge base and centralised hub for visualising different types of data in unique and innovative ways. 
They could be made accessible through an Internet browser, eliminating the need to install special 
software. The interface should be simple and intuitive to encourage data interaction for the average user 
and eliminate the need for coding. Basic data operations available might include “grouping”, “filtering”, 
“adding metadata” and “identifying data types”, and would allow users transform and structure raw data 
into meaningful representations. For quick exploration and storage of massive data sets, the system’s back-
end should be connected to a powerful cloud-computing engine, leveraging the open-source distributed 
computing framework. These frameworks are able to create visualisations from Big Data in a matter of 
minutes. 
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Figure 8.  Analysis and visualisation of labour market access in Buenos Aires 
(by mode of transport)  

 
 

 
Source: World Bank and Conveyal, 2014. 
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Figure 8 depicts an analytic and visualisation-based tool developed by Conveyal in partnership with the 
World Bank. Building on prior work undertaken for the Regional Plan Association of the greater New York 
metropolitan area, this online tool allows the quantification and visualisation of access to labour markets in 
Buenos Aires, Argentina. It is built upon a hybrid platform comprising open-source spatial and transport 
network analysis software (OpenTripPlanner and Transport Analyst)3, an open source format for encoding 
public transport schedules and route/stop locations (General Transit Feed Specification – GTFS), a global, 
open and collaborative cartographic database (OpenStreetMap), and an open source Java library for 
implementing on-line map-based visualisations (Leaflet4). Using this freely open and replicable platform 
users can dynamically visualise open data on jobs (including job distribution, access and sector) within the 
city. This in turn allows users to effectively derive insights that had been difficult or nearly impossible to 
elucidate previously.  

For example, Figure 8 shows in the “villa miseria” of Villa Fiorito, in Buenos Aires. “Villas miseria” are low-
income informal housing neighbourhoods, or slums. The online tool calculates the number and type of jobs 
accessible by these low-income residents given actual public transport schedules and real street 
topography. In a 45-minute (one-way) time window, Villa Fiorito residents can access 194 485 jobs using 
scheduled public transport. However, as the visualisation shows, they could potentially access four times as 
many jobs (825 442) by bicycle. This type of information, previously not as easily accessible, could more 
effectively guide investment in public transport or, alternatively, in safe bicycle infrastructure5.  

To promote universal access and shareability, visualisations should be able to be exported and distributed 
in a number of formats, from pictures to videos or web pages. Interactive tabletops and large interactive 
displays are more likely to appeal to novice users (Benko, et al., 2009) and attract attention in public 
spaces. (Isenberg, et al., 2010) The shareability of the visualisation platform itself becomes equally 
important as it allows for smart integration with other platforms like government web portals. It also allows 
new modules to be added by third parties in an open-source environment. 

Visualisations based on data need not only be made using the types of “pre-digested” formats described 
above. Diffusion of the products of data analysis, as well as the distribution of some forms of data, already 
takes place using paper or digital documents. However, the utility of these channels is waning since these 
media are generally static. Online access to tabular or geographic data that is directly useable by various 
software platforms can be valuable for some forms of data analysis. Increasingly, however, diffusion of data 
will occur via machine-interpretable Application Programming Interfaces (APIs) or data formats that allow 
the integration of this data directly into different mobile or other applications. App-led data access on 
mobile handsets based on APIs has contributed to many new services that greatly facilitate navigation, 
travel, logistics and other transport-related services for individuals and businesses. Data diffusion via APIs 
will play an increasingly important role in citizen access and use of mobility-related data but the ultimate 
benefits of this data diffusion channel will depend on the terms of use associated with that data. 

Data terms of use run the spectrum: from completely “open” terms with no restrictions on use and 
redistribution, to highly-constrained terms that allow commercial access to data only under a limited set of 
conditions. Open data proponents advocate for as much data as possible to be provided under open terms 
of use. This includes (nearly) all government-collected data, which they argue citzens already pay for via 
taxes, and therefore should have free access to. There are of course issues with the open data model 
relating to security and privacy concerns. However, many authorities are moving towards opening access to 

                                                 
3 Conveyal.com, accessed April 2015. 
4 Leaflet is a service based on leafletjs, an open source JavaScript library for mobile-friendly interactive maps (leafletjs.com). 
5 The same analysis indicates that, in freely flowing traffic conditions, Villa Fiorito residents could potentially reach 25 times more 

jobs by car in 45 minutes than by scheduled public transport. This serves to explain the compelling attraction of individual 
motorised mobility. The potential of car travel is unlikely to be reached, though, as it is constrained by household incomes as 
well as by time losses linked to congestion at peak hours. 
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much of their data, especially in transport. On the other end of the spectrum, the limitations imposed in 
accessing commercially collected data are understandable, given that the companies collecting data, and 
delivering services based on the use and analysis of it, must deliver value to their owners and shareholders.  

The debate surrounding “open” versus “closed” data access is one that has emerged alongside the 
development of Big Data and may prove to be a transitory debate, as data access channels and terms 
evolve over time. Ultimately, more flexible and perhaps more modular data terms of use will need to evolve 
to allow individuals, authorities and commercial operators to all make the most of Big Data. 
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3. Big Data, personal data and privacy 

The exponential growth in the production and storage of mobility-related data has been accompanied by 
rising concerns relating to the adequacy of regulations ensuring privacy. These concerns have been fuelled 
by the personally identifiable nature of much of the data being collected and the fact that it is often 
collected without the full knowledge and informed consent of the data object. Even arguably “anonymous” 
data – for instance unencrypted transmissions from tire pressure monitoring systems – can now be easily 
cross-referenced with other sources of contextual data to link individuals to vehicles and vehicles to 
locations and trajectories. This can be seen to compromise reasonable expectations of personal privacy. 
Location-based data is particularly vulnerable to breaches in privacy. Yet much of the mobility-related data 
being produced today has a geospatial component. 

Big Data analytics raises several issues relating to generic privacy threats. These are related to, but 
different from, threats related to breaches of cyber-security (see box 5). Privacy threats exist in relation to 
the collection or discovery of personal data by economic agents as well as by governments. In the latter 
case, recent allegations relating to large-scale data collection and storage by governments has raised acute 
concerns regarding the extent of state-sponsored “dataveillance”. Mobility-related data, especially location-
based data, raises a set of specific privacy and data protection concerns that will be addressed in this 
section.  

Box 5.  Privacy vs. cybersecurity threats  

Privacy is “the claim by individuals, groups or institutions to determine for themselves when, how and to what 
extent information about them is communicated to others, and the right to control information about oneself 
even after divulgating it” Alan F. Westin. (Westin, 1967) 

Geo-spatial privacy is “the ability of individuals to move in public space with the expectation that under 
normal circumstances their location will not be systematically and secretly monitored for later use” Geospatial 
Privacy and Risk Management Guide, Natural Resources, Canada. (Natural Resources Canada, 2010) 

Cybersecurity and privacy are two distinct but related concepts. They define and attempt to enforce 
policies relating to computer use and electronic communications. In particular, cybersecurity seeks to assess 
the following (PCAST, 2014): 

 Identity and authentication: Are you who you say you are? 

 Authorisation: What are you allowed to do to which part of the system? 

 Availability: Can attackers interfere with authorised functions? 

 Confidentiality: Can data communications be passively copied by someone not authorised to do so? 

 Integrity: Can data or communications be actively manipulated by someone not authorised to do so? 

 Non-repudiation, auditability: Can actions later be shown to have occurred? 

The growing importance of network-based information and other connected services in transport obviously 
poses increased cyber-security risks, especially when networked-based systems interact directly or indirectly 
with primary control systems of vehicles. 

A recent survey of potential cyber-attack vulnerabilities of US cars identified a number of potential attack 
surfaces posing variable risks depending on vehicle and sub-system design. It notes that manufacturers’ 
anticipation of risks and design response is uneven, especially for secondary systems – including the distributed 
network of electronic control units (ECUs) within vehicles. Convergence between sensor networks and vehicle 
control systems (e.g. those found in automatic cruise control, lane keeping or parking assistance functions) 
poses particularly strong risks in that sensor inputs can potentially be modified or spoofed leading to degraded 
or lost control of vehicles (Miller & Valasek, 2014). 

One response to the growing complexity of vehicle hardware-software interfaces is to develop comprehensive 
but variable secure system architecture based on critical risk assessments. For instance, EU project EVITA 
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Despite concerns over privacy, location-based data enhances services available to individuals and may 
contribute to significant improvements in safety, traffic operations and transport planning. For instance, E-
call or E-911 services that enable vehicles to report their spatial coordinates to a central server in case of a 
crash improve response times and accuracy. 

Likewise, individuals voluntarily contributing their spatial coordinates to applications have the expectation 
that this data will improve the quality of service they receive. This exchange is the basis for many services 
that provide real-time traffic information or personalised recommendations for hotels, restaurants and the 
like. But the value of this data is not limited to the explicitly identified first-use case. Companies can and 
have aggregated and sold this data – or the results of their analysis of this data – to other companies or 
public authorities for re-use, merging with other data and re-analysis. 

There is a real tension between the value of large-scale flows of what may be weakly or non-anonymised 
data and the contribution that this same data can make to individuals and society. Part of this tension 
emerges because uses for this data may emerge only after the data has been collected or combined with 
other data, rendering notification of intent moot. There is also a realisation across many jurisdictions that 
the regulatory framework concerning data collection and use, for mobility-related data in particular, is 
poorly adapted to changes occurring in the volume and velocity of data collection. Finally, there is a fear 
that regulatory backlash against the collection and use of Big Data may hamper yet-undiscovered value in 
this data and curb the economic and social benefits the use of such data promises. 

These challenges are acute and what is at stake is an erosion of personal privacy rights. These rights are 
ones that some in the private sector believe are, at best, not aligned to current technological developments 

outlines trust models and security measures that are based on core hardware security modules, hard-wired into 
each electronic control unit. These have various levels of strength depending on the mission-criticality of each 
ECU sub-system. In this case, ECUs controlling speed, forward and backward motion, steering and braking 
receive the highest level of protection and those controlling the on-board environment receive lower protection. 
At the core of the system are strong cryptographic methods that ensure the integrity and authenticity of system 
messages and allow for the detection of tampered, altered or non-authentic messages to or from vehicle 
systems. (EVITA, 2012) 

Other cyber-security vulnerabilities remain. Two recent examples of cyber-attacks on indirect but mission-
critical systems involve spoofing of Global Positioning System (GPS) signals used to pilot ships and aircraft. In 
the first instance, researchers were able to feed spoofed GPS coordinates to the automatic navigation system of 
a vessel allowing the attackers to gain full directional control. Although the attack was on an automatic 
navigation system, the method also fed incorrect GPS coordinates to all on-board GPS receivers. This meant the 
crew only received data indicating the vessel was still on-course. (Bhatti & Humphreys, 2014) In the second 
instance, an unmanned drone was spoofed into flying off-course. (Kerns, et al., 2014) It has been reported that 
a similar approach was used to gain access to and divert a US military drone in 2011. (Peterson, 2011) 

Cyber-security risks are also a concern for transport systems more broadly, as increasing complexity and 
connectedness opens up new avenues for malicious interventions. The need for adequate data encryption 
protocols and practices for handling remote sensor data was highlighted by a remote and passive hack of 
unencrypted wireless road sensor data. Spoofing or manipulating this data could have important and severe 
consequences for traffic system operations that depend on these data feeds to coordinate emergency services, 
signal timing and traffic variable messaging systems, among others. (Cerrudo, 2014) 

Both cybersecurity and privacy focus on potential damages that can be caused via malevolent or dangerous 
manipulation of computer and communication systems. Poor cybersecurity practices may lead to exposure, 
gathering and malicious use of personal data. However, privacy risks remain even in fully secured systems. 
Misuse of personal data in otherwise secure systems by authorised operators represents a violation of privacy 
policy, not of security policy. Similarly, violations of privacy may emerge after data fusion across multiple, fully 
secured, systems. These distinctions are important and demonstrate it is not enough to focus solely on cyber-
security in order to ensure personal data protection. (PCAST, 2014) 
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or, at worst, irrelevant6. Many proponents of this belief point to the very real improvements in service 
delivery that could be facilitated by data convergence. A world in which, for instance, personal and 
seamless mobility choices could be offered to citizens based on their individual characteristics needs and 
behaviours. However, as pointed out at a recent OECD Technology Foresight Forum, Big Data analytics 
should not be absolved of core ethical principles. Foremost amongst these principals is the understanding 
that “just because you can, doesn’t mean you should”. (OECD, 2013) 

There is also a risk that regulatory backlash against Big Data fuelled by attacks on personal privacy may 
hamper innovation and curb the economic and social benefits the use of such data promises. Evolving 
regulatory approaches will have to simultaneously deliver on the pro-privacy and pro-innovation 
expectations of citizens. 

Personal data protection frameworks 

OECD personal data protection framework and guidelines 

In 1980, the Organisation for Cooperation and Development (OECD) adopted the first internationally-
agreed (but non-binding) guidelines framing the collection and exchange of personally identifiable data – 
the “Guidelines Governing the Protection of Privacy and Transborder Flows of Personal Data”. These 
guidelines were issued in the hope that they would serve to balance privacy concerns with the benefits that 
derive from the international flow of information. They have served as the underlying framework for data 
protection and privacy laws throughout the OECD and elsewhere. They are not law and their 
implementation into national regulations has not been uniform. Yet they have served as a basis for the legal 
framework surrounding data protection in many jurisdictions. The guidelines are articulated around eight 
principles addressing (for more detail, see box 6): 

 Limitations to data collection. 

 Data accuracy and relevance to stated use. 

 Communication of the purpose for data collection and limitations of data use to that purpose. 

 Restrictions on data disclosure. 

 Data safeguard and security measures. 

 Transparency regarding the use, and changes in use, of personal data. 

 The right of individuals to have access to or control the use of their data. 

 Accountability of data controllers regarding the above principles. 

As a general guiding framework for data privacy policies, these principles have served relatively well over 
the past 35 years. However, in practice and in important points of detail, their continued implementation 
has become increasingly problematic. The environment in which data privacy efforts has evolved since the 
creation of the 1980 OECD Guidelines, as outlined in previous sections. In particular, the implementation of 
these principles is challenged by a number of factors (OECD, 2013): 

 The growing ubiquity of data collection across multiple platforms. 

 The volume and velocity of data produced and collected. 

 Data fusion and aggregation efforts that potentially de-anonymise data. 

 The range of analytical methods and techniques that reveal information regarding individuals, their 
behaviour and associations and their interests. 

                                                 
6 Some leaders in the IT sector have intimated that privacy rights as they have been interpreted in the past are no longer 

feasible. Eric Schmidt, Executive Chairman of Google, is quoted as saying: “If you have something that you don’t want anyone 
to know, maybe you shouldn’t be doing it in the first place” – (Banks, 2011)). Scott McNealy, CEO of Sun Microsystems is on 
reecord saying “You have zero privacy anyway … Get over it." (Sprenger, 1999). 
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 Ex-post data mining and re-use of data in ways that were not originally intended. 

 The growing range of threats to the privacy of personal data. 

 The number of actors that can either compromise personal data privacy or act to protect it. 

 Citizens’ insufficient or ill-informed knowledge regarding the complexity of interactions relating to the 
collection and use of personal data. 

 The ease of access to and global availability of personal data. 

Furthermore, at the core of the OECD Guidelines (and other initiatives and laws inspired by OECD 
Guidelines them) is the notion that only personal data – e.g. information that could identify an individual 
such as a name or a civil registration number, or that could reasonably be used to identify an individual 
such as an address – should be governed by those principles. Personal data that has been de-identified – 
e.g. personal data that has had individual identifiers removed or that has been modified in such a way as to 
make re-identification reasonably unlikely – arguably falls outside of the scope of these principles. However, 
the combinatory aspect of Big Data blurs the line between personal and “anonymous” data. There is a real 
risk that the latter may serve to re-identify the former when used in conjunction with other ostensibly 
anonymous data sources. 

In response to these challenges, the OECD reassessed the 1980 principles and adopted a revised set of 
principless (OECD, 2013) that provided new guidance, notably in the areas of accountability and notification 
of security breaches. The 2013 guidelines also highlighted the need for further research on the evolving 
nature of consent, purpose limitation and of the role of the individual in data privacy. Ultimately, however, 
the expert group preparing the OECD Council document could not reach consensus regarding the 
modification of the original eight core principles and thus these remain unchanged. 

A number of other national or international privacy protection guidelines have been based on the OECD 
principles each emphasising or de-emphasising certain aspects. (Cate, 2006) 

EU personal data protection frameworks 

In 1995, the EU Data Protection Directive (Directive 95/46/EC) identified a set of principles that largely 
incorporates those of the OECD guidelines. Two additional principles were added: one on independent 
oversight of data controllers and processors; and one outlining the legally enforceable rights of individuals 
against data collectors and processors. 

The ePrivacy Directive of 2002 (and revised in 2009) speaks more specifically to location data. Location 
data in the Directive refers to: 

“The latitude, longitude and altitude of the user’s terminal equipment, to the direction of 
travel, to the level of accuracy of the location information, to the identification of the network 
cell in which the terminal equipment is located at a certain point in time and to the time the 
location information was recorded.” (Directive 2009/136/EC) 

However, the ePrivacy Directive considers location data only in the context of binding rules for telecoms 
operators (Cheung, 2014) – this is an important distinction that largely ignores other collectors, 
aggregators and users of location data (see Box 8 on location accuracy). Companies identified as 
“information society services” fall outside of the regulatory framework of the ePrivacy Directive, even if the 
location data they collect is transmitted via telecom operators’ networks. 

In 2012, the European Commission outlined a new directive – the General Data Protection Directive – to 
replace that of 1995. This new regulation builds on the prior text but outlines several enhanced privacy 
protections. These include:  

 The “right to be forgotten” to help manage online data privacy risks. Individuals can request that data 
pertaining to them be deleted if there are no legitimate grounds for keeping it. 
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 Improved visibility and access to one’s personal data and the right to transfer one’s personal data from 
one service provider to another. 

 Requirements for clear and explicit consent to collect and use personal data. 

 Improved administrative and judicial remedies in cases of violation of data protection rights. 

 More robust responsibility and accountability for those collecting and processing personal data – e.g. 
through data protection risk assessments, data protection officers, and the principles of ”Privacy by 
Design” and ”Privacy by Default”. (European Commission, 2012) 

Crucially, the General Data Protection Directive simplifies the definition of personal data to “any information 
related to a data subject”. This explicitly includes location data. In contrast with recent US discussions on 
data protection, the proposed EU Directive upholds the need for robust notice and consent prior to the 
collection and processing of personal data from data subjects. The EU approach also stresses the need to 
limit data collection to within its stated purpose, to ensure restrictions on automated processing and the 
need for independent regulatory oversight and robust enforcement mechanisms for transgressions 
regarding personal data rules (as inscribed in national laws). 

European approaches to data privacy are seen by many as the standard in most parts of the world where 
data privacy laws have been enacted, and this influence seems to be growing. (Greenleaf, 2012) (Schwartz, 
2013) The General Data Protection Directive is set to be adopted in 2015 and will represent the strongest 
implementation of the data protection rules inspired by the OECD Guidelines. This may foreshadow a 
strengthening of personal data protection rules in a number of jurisdictions – but not all as discussed below.  
 

Box 6.  OECD Guidelines Governing the Protection of Privacy and Transborder Flows  
of Personal Data 

As adopted by the Council of Ministers of the Organisation for Economic Cooperation and Development on 23 
September 1980. 

1. Collection limitation principle 
There should be limits to the collection of personal data and any such data should be obtained by lawful and fair 
means and, where appropriate, with the knowledge or consent of the data subject. 

2. Data quality principle 
Personal data should be relevant to the purposes for which they are to be used and, to the extent necessary for 
those purposes, should be accurate, complete and kept up-to-date. 

3. Purpose specification principle 
The purposes for which personal data are collected should be specified not later than at the time of data 
collection and the subsequent use limited to the fulfilment of those purposes or such others as are not 
incompatible with those purposes and as are specified on each occasion of change of purpose. 

4. Use limitation principle 
Personal data should not be disclosed, made available or otherwise used for purposes other than those specified 
in accordance with the “purpose specification principle” except: 

a) with the consent of the data subject 

b) by the authority of law. 

5. Security safeguards principle 
Personal data should be protected by reasonable security safeguards against such risks as loss or unauthorised 
access, destruction, use, modification or disclosure of data. 

6. Openness principle 
There should be a general policy of openness about developments, practices and policies with respect to 
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APEC and other Asian personal data protection frameworks 

In 2004, the Asia-Pacific Economic Cooperation (APEC) forum adopted the APEC Privacy Framework that, in 
its 9 principles, consciously builds on the OECD Guidelines. It extends the notice and consent principle to 
include a call for “clear and easily accessible” statements, along with a call for all reasonably practical steps 
be taken to provide consent either before or at the time of collection – or soon thereafter. This change in 
language is a concession to the fact that notice and consent may be difficult to achieve in certain scenarios, 
including those that involve real-time or machine-to-machine digital data collection. 

The APEC Privacy Framework also introduces a principle on preventing harm –in particular, the need for 
data protection efforts to be commensurate with the potential for harm from personal data release or 
discovery. Not all personal data poses the same risk for creating negative outcomes for data subjects and 
data protection efforts should account for this. (APEC, 2004) 

Within Asia, many countries have put in place personal data protection frameworks that are inspired by 
those of the OECD/EU and APEC with some important distinctions. In particular, many countries in the 
region have adopted an EU-like approach that encompasses formalised notice and consent requirements for 
data collection and use, the creation of a limited, and often time-bound, set of conditions on data 
processing and controls on the forward movement of data to third parties or other jurisdictions. 

In Japan, for instance, notice of data collection can be provided directly to an individual or via public 
announcement. In either case, explicit consent is not required if the purposes for use of the data have 
previously been specified in the personal notice or public announcement. Specific opt-in consent is only 
required in cases that go beyond the announced data usage. (Rich, 2014) The South Korean Data 
Protection Act has stringent guidelines in place regarding the need for notice and express consent for 
collection, use and transfer of personal data. The notice must specify the intended use of personal data and 
its eventual disclosure to third-parties (Rich, 2014). 
 

personal data. Means should be readily available of establishing the existence and nature of personal data, and 
the main purposes of their use, as well as the identity and usual residence of the data controller. 

7. Individual participation principle 
An individual should have the right: 

a) To obtain from a data controller, or otherwise, confirmation of whether or not the data controller has data 
relating to him. 

b) To have communicated to him, data relating to him: 

i) within a reasonable time 

ii) at a charge, if any, that is not excessive 

iii) in a reasonable manner 

iv) in a form that is readily intelligible to him. 

c) To be given reasons if a request made under subparagraphs (a) and (b) is denied, and to be able to 
challenge such denial. 

d) To challenge data relating to him and, if the challenge is successful to have the data erased, rectified, 
completed or amended. 

8. Accountability principle 
A data controller should be accountable for complying with measures which give effect to the principles stated 
above. 
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United States’ personal data protection frameworks 

In 1998 and again in 2000, the US Federal Trade Commission (FTC) reported to the US Congress those 
principles it felt should frame US data protection policy. These related to (Cate, 2006):  

 notice given to citizens regarding data collection and intended uses 

 the choice framework offered to citizens relating to personal data collection and use and the need to 
obtain consent 

 the possibility for citizen’s to access data about themselves and to contest this data on grounds of 
inaccuracy or incompleteness 

 the responsibility for data controllers to keep personal data secure and accurate, and  

 the need for enforcement and redress mechanisms to secure the above.7  

Noticeably absent from the FTC communication to Congress is an explicit data collection limitation principle 
and one relating to data quality. 

In 2012, the Federal government issued a report outlining a Consumer Privacy Bill of Rights (CBRB) which 
addresses commercial but not public sector uses of personal data. While drawing on precedent set by the 
OECD Guidelines, the CBRB introduces the concept of context-dependency – that is that citizens should 
expect that data controllers and processors will collect, analyse and dispose of data in line with the context 
in which citizens supplied the data. (PCAST, 2014) 

Generally, the United States and the EU have differed in their approaches to the protection of personal data 
in a number of significant ways. While the EU has favoured a single framework for addressing personal data 
protection, the US (and some other countries) have favoured a sectoral approach and, in particular,  
distinguish between the private and public sector when making rules governing the collection, processing 
and use of data. 

The way in which personal data is treated by the law in the US also differs according to the entity that 
controls the data or the type of data recorded. This sectoral approach has tended to place higher 
restrictions on incumbent industries in existing and more regulated sectors such as telecommunications in 
contrast with many recent new and emerging businesses in the IT sector. (Schwartz, 2013) 

In contrast with the EU, the US generally adopts an approach best characterised by “regulatory parsimony” 
in the field of personal data protection. For instance, the US approach generally allows data collection and 
processing unless a specific law prohibits it whereas the EU requires express legal authorisation for data 
processing. The divergence from an OECD/European-style approach to personal data protection seems 
likely to increase given recent developments. 

In January 2014, the Executive Office of the President of the United States announced an initiative to 
investigate ways in which Big Data will affect the lives of citizens – including their privacy rights – and to 
suggest new directions for policies accounting for these changes.8 The output from that initiative highlights 
the difficulty traditional notify-and-consent frameworks face in light of evolving data collection and 
processing practices. 

In the first instance, it notes that the context-dependency principle of the CBRB fails to account for the 
changing nature in which personal data is collected and how personally identifiable data can be inferred 
from “anonymous” data. Data that can be tied to an individual is increasingly not provided by the data 

                                                 
7 The enforcement/redress principle was dropped in the guidance issued by the FTC in 2000. 
8 The initiative was led by White House Counsellor John Podesta and informed by an advisory group of the President’s Council of 

Advisors on Science and Technology. The outcome of this work was two reports: Big Data: Seizing Opportunities, Preserving 
Values (Executive Office of the President, 2014), and Big Data and Privacy: A Technological Perspective (PCAST, 2014). Both 
outline future policy directions that could be frame US policy in the matter, although neither are binding. 
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subject itself but harvested from ambient data sources or emerges ex-post from co-mingling of various data 
streams. This risk increases with the growth in data volumes and, especially, the growth in data sources 
like smart phones and other personal mobile devices.  

In the second instance, it stresses that the value emerging from data collection and analytics increasingly 
emerges after the fact and after combining and mining diverse data streams. The President’s Council of 
Advisors on Science and Technology suggests that compelling benefits emerge from retaining personal or 
potentially personably identifiable data for subsequent re-analysis as analytical techniques evolve. 
Arbitrarily requiring data to be deleted would, they argue, stifle innovative insights and uses that may 
otherwise emerge. 

Effectively anonymising or otherwise obscuring personal information within retained data would moot 
privacy concerns relating to data retention. But the proliferation of Big Data sets and the multiplication of 
data sources erode the effectiveness of anonymisation and de-identification techniques.  

The Executive Office report also highlights the challenge of enacting meaningful consent from citizens and 
consumers. Consumers are often presented with an exhaustive notification text while they are trying to 
access a particular service. The app or service provider may have spent considerable effort and legal 
expertise crafting a thorough consent notification document that does not conflict with the service 
provider’s commercial interest. However, the consumer in a hurry to access a service rarely reviews such a 
notification, rendering any consent they provide as superficial or blind. In this way, data protection efforts 
may in fact be weakened rather than strengthened by the current notice and consent framework. 

Additionally, the intersection between the need to provide notice and consent under current regulatory 
frameworks and the practice of broadly and open-endedly mining data has resulted in increasingly wide-
ranging and permissive privacy notice and consent clauses. This has led to a situation where data subjects 
may willingly agree to an erosion of their privacy rights because they are neither engaged in a meaningful 
way and because of overly broad conditions regarding use of their data. 

Faced with these challenges, the report of the Executive Office asks “whether a greater focus on how data 
is used and reused would be a more productive basis for managing privacy rights in a big data 
environment”. (Executive Office of the President, 2014) In particular, the President’s Council of Advisors on 
Science and Technology notes that: 

“…the non-obvious nature of Big Data’s products of analysis make it all but impossible for an 
individual to make fine-grained privacy choices for every new situation or app. For the 
principle of Individual Control to have meaning, [we] believe that the burden should no longer 
fall on the consumer to manage privacy for each company with which the consumer interacts 
by a framework like “notice and consent.” Rather, each company should take responsibility for 
conforming its uses of personal data to a personal privacy profile designated by the consumer 
and made available to that company (including from a third party designated by the 
consumer)”. (PCAST, 2014) 

This view is shared by many industry actors (see below) and, if implemented, would signal a strong break 
from existing data protection frameworks like those outlined in the OECD principles and in EU legislation. 
 

Private-sector initiatives 

Since the update to the OECD principles, two private-sector initiatives have sought to push the regulatory 
framework further still. The first initiative, led by Microsoft Corporation and organised by the Oxford 
University Internet Institute, released the report “Data Protection Principles for the 21st Century”. (OII, 
2014) The second initiative, organised by the World Economic Forum (WEF) in collaboration with the Boston 
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Consulting Group (BCG), published its analysis in the report “Unlocking the Value of Personal Data: From 
Collection to Usage”. (WEF, 2013) 

Both initiatives share the view that the 2013 update of the OECD Guidelines is anachronous and 
insufficiently addresses the rapid and fundamental changes surrounding data collection, analysis and use. 
They detail what they see as fundamental differences with traditional approaches to data protection as 
exemplified in the OECD rules (see Table 1). 

 
Table 1.  Emerging private sector perspectives regarding data use and privacy 

Traditional Approach Emerging New Perspectives 

Data actively collected with data subject  
and data user awareness. 

Data largely from machine-to-machine transactions and passive 
collection – difficult to notify individuals prior to collection. 

Definition of personal data is predetermined,  
well-identified and binary (personal/not personal). 

Definition of personal nature dependant on combinatory techniques 
and other data sources or may be contextual and dependent on 
social norms. 

Data collected for a predetermined specific use and 
for a duration in line with that use. 

Social benefits, economic value and innovation come from co-
mingling data sets, subsequent uses and exploratory data mining. 

Data accessed and used principally by the data 
subject. 

Data user can be the data subject, the data controller and/or third 
party data processors. 

Individual provides consent without full 
engagement or understanding. 

Individuals engage in meaningful consent, understand how data is 
used and derive value from data use. 

Data privacy framework seeks to minimise risks to 
individuals. 

Data protection framework focuses more on balancing individual 
privacy with innovation, social benefits and economic growth.  

Source: (WEF, 2013). 

 

The WEF and Oxford/Microsoft initiatives stress that the current framework offering a binary (yes/no) and 
one-time consent is out of step with pro-innovation data collection and use practices, as well as ignoring the 
fact that data subjects are also data producers themselves. In particular, WEF outlines what it has identified 
as four main shortcomings of the revised OECD Guidelines: 

 They fail to account for the possibility that new and beneficial uses for the data will be discovered, long 
after the time of collection. 

 They do not account for networked data architectures that lower the cost of data collection, transfer 
and processing to nearly zero, and enable multi-user access to a single piece of data. 

 The torrent of data being generated from and about data subjects imposes an undue cognitive burden 
on individual data subjects. Overwhelming them with notices is ultimately disempowering and 
ineffective in terms of protection. 

 In many instances - for example, while driving a car or when data is collected using many machine-to-
machine (M2M) methods - it is no longer practical or effective to gain the consent of individuals using 
traditional approaches. (WEF, 2013) 

In many fundamental ways, the conclusions of the WEF and Oxford/Microsoft initiatives echo the recent 
work of the Executive Office of the President in the United States. This could be because the latter drew 
heavily on industry representatives involved in the former. They also run counter to the most recent 
developments in EU personal data protection. 

In light of the ambiguous nature of personal data and the difficulty in reconciling the principles of purpose 
specification, use limitation, notification and consent with evolving Big Data collection and analytic 
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practices, both the WEF and Oxford/Microsoft initiatives emphasise a need to re-visit some of the core 
principles of the OECD Guidelines. 

Most important is the need to re-formulate personal data protection practices that currently rest on 
providing notice and consent, towards principles outlining clear rules and sanctions on allowable uses of 
personal data. Oxford/Microsoft’s “Data Protection Principles for the 21st Century” summarises this position: 

“A revised approach should shift responsibility away from individuals and towards data 
collectors and data users, who should be held accountable for how they manage data rather 
than whether they obtain individual consent. In addition, a revised approach should focus 
more on data use than on data collection because the context in which personal information 
will be used and the value it will hold are often unclear at the time of collection.” (OII, 2014) 

Under this premise, Oxford/Microsoft proposes a revised set of principles adapted from the 1980 OECD 
Guidelines. These revised principles make a distinction between principles that should apply to data 
collection and those that should apply to data use. Furthermore, it broadly expands the boundaries of data 
use. It calls for potential harms that could stem from discovery of personal data to be more rigorously 
balanced with the benefits that could stem from personal data collection and use. It also stresses that the 
principles it proposes are only applicable to personal data that has not been de-identified. Finally, it retains 
the notion of notice and consent as per the original OECD Guidelines but loosens this requirement by calling 
on data collectors to “evaluate whether individuals might reasonably anticipate that their data will be 
collected in determining whether consent is required”. (OII, 2014) 

WEF notes a number of emerging issues that will have to be addressed if the shift outlined above were to 
become operationalised:  

Firstly, a shift from passive and binary consent to more engaged models of user involvement with their data 
brings a need to trace data to a source and to an individual. Attaching metadata that is both  Persistent and 
un-purgeable to raw output from sensors or as early as possible in the data collection chain could help. This 
is an approach promoted by “Privacy by Design” advocates (below and box 7). 

Secondly, more meaningful options will have to be made clear to citizens regarding the uses of their 
personal data. In this context, offering a broad palette of context-specific use consent choices – e.g. 
allowing use of personal data for medical or emergency services but not for targeting advertisement – may 
be the way forward. It may also be useful to distinguish between using personal data to generate broad 
insights (e.g. in support of transport planning) versus use of these insights (e.g. particular daily mobility 
patterns) applied to an individual. 

Finally, in addition to regulatory frameworks, WEF notes that new types of user-centric arrangements (peer 
networks, privacy “labels”, designated privacy profile “managers”, etc.) have yet to be explored. These 
arrangements can help to further engage individuals in ensuring that their preferences regarding the use 
and re-use of their personal data are met. 

It should also be noted that, generally, the drift away from existing notice and consent frameworks to one 
more focused on use of data presupposes the presence of a well-funded and competent regulatory agency. 
Such an agency would oversee data uses and resolve, and possibly prosecute, conflicts. Furthermore, such 
an agency would need to be equipped to address asymmetric and extended legal struggles with large and 
powerful multi-national corporations. There is evidence that such an approach may work – examples in the 
field of competition policy come to mind – but it is far from clear that authorities have an appetite for 
creating such strong and well-resourced agencies given the general move away from expensive and 
powerful regulatory control in many countries. 
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“Privacy by Design” 

Much of the regulatory discussion regarding the collection and use of personal data says little about the design 
of data collection mechanisms and practices. In most cases it assumes that little will evolve in terms of the 
way in which data and data systems embed and transmit bits of personably identifiable information. This view 
is contested, especially by those who advocate the “Privacy by Design” approach (see box 7). This approach 
holds that data collection systems and practices should be designed (or re-designed) from the ground up to 
include strong and irreversible pro-privacy measures for data collecting and handling systems – even in the 
design of machine logging protocols and sensors.  
 

Box 7.  “Privacy by Design” 

“Privacy by Design” is an approach to the design of data collection mechanisms and practices developed  
by Ann Cavoukian, Executive Director of the Institute for Privacy and Big Data at Ryerson University, Canada,  
and former Information and Privacy Commissioner for the Province of Ontario. “Privacy by Design” is based on 
the principle that strong pro-privacy measures should be addressed at the design stage for data collection and 
analysis, not retro-fitted ex-post once data has been collected and analytic systems developed. The approach is 
comprised of seven core principles.  

1. Proactive, not reactive – preventative, not remedial 
The “Privacy by Design” (PbD) approach is proactive rather than reactive. It anticipates and prevents privacy 
invasive events before they happen. PbD does not wait for privacy risks to materialise, nor does it offer 
remedies for resolving privacy infractions once they have occurred – it aims to prevent them from occurring. 
“Privacy by Design” comes before-the-fact, not after. 

2. Privacy as the default setting 
“Privacy by Design” delivers the maximum degree of privacy by ensuring that personal data are automatically 
protected in any given IT system or organisational practice. If an individual does nothing, their privacy still 
remains intact. No action is required on the part of the individual to protect their privacy – it is built into the 
system, by default. 

3. Privacy embedded into design 
“Privacy by Design” is embedded into the design and architecture of IT systems, organisational and business 
practices. It is not bolted on as an add-on, after the fact. The result is that privacy becomes an essential 
component of the core functionality being delivered. Privacy is integral to the system, without diminishing 
functionality. 

4. Full functionality: positive-sum, not zero-sum 
“Privacy by Design” seeks to accommodate all legitimate interests and objectives in a positive-sum, win-win 
manner, not through a zero-sum approach, where unnecessary trade-offs are made. “Privacy by Design” avoids 
the pretence of false dichotomies, such as privacy vs. security, demonstrating that it is possible to have both. 

5. End-to-end security: full lifecycle protection 
“Privacy by Design”, having been embedded into the system prior to the first element of information being 
collected, extends securely throughout the entire lifecycle of the personal data involved – strong security 
measures are essential to privacy, from start to finish. This ensures that all personal data are securely retained, 
and then securely destroyed at the end of the process, in a timely fashion. Thus, “Privacy by Design” ensures 
cradle to grave, secure lifecycle management of personal information, end-to-end. 

6. Visibility and transparency: keep it open 
“Privacy by Design” seeks to assure all stakeholders that whatever the organisational or business practice or 
technology involved, it is in fact, operating according to the stated promises and objectives, subject to 
independent verification. Its component parts and operations remain visible and transparent, to users and 
providers alike. 
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“Privacy by Design” calls for privacy-protective measures to be built directly into the design and operation 
of technology as well as into data management practices surrounding data systems (e.g. work processes, 
management structures, physical security perimeters, linkages in networked infrastructure) (Cavoukian, 
2010). Proponents of “Privacy by Design” feel that this approach enhances the ability for data analytics 
(and Big Data analytics in particular) to deliver value since fewer conflicts emerge regarding the release of 
personally identifiable information. Both the EU Data Protection Directive and the WEF report outlined in the 
previous section note the importance of “Privacy by Design” approaches. 

“Privacy by Design” in the context of big data rests on seven features (Cavoukian & Jones, 2012): 

1. Full attribution: Every observation or record should be traceable to its point and time of creation. This 
includes data related to the type of machine logging process or sensor platform involved. Merge-purge 
data processing where some data or metadata fields are discarded when data is combined must be 
avoided. This allows the fine-grained implementation of user data preferences and ensures their 
backwards compatibility, even in merged data sets. Full provenance metadata facilitates data 
accountability, reconciliation and audit and is essential for the application of personalised privacy 
controls on data. According to “Privacy by Design” advocates, full attribution of data should be made 
the default setting in systems and should not be allowed to be turned off.  

2. Data tethering: Additions, modifications and deletions in data systems should be accounted for in real 
time and should propagate throughout all other data systems that include the data in question. When 
data is modified in one system, these changes should cascade throughout the shared data ecosystem 
irrespective of who manages each linked or merged data set. This includes changes in the privacy 
setting for that data. This feature pre-supposes strong access rights that are linked to the original data 
collector or user. Data tethering should be the default according to “Privacy by Design” and this should 
be an inalterable setting of data management systems.  

3. Analytics of anonymised data: Anonymising or encrypting personally identifiable data as well as 
quasi-identifiers is an essential step in ensuring that Big Data analytics do not encroach on individuals’ 
privacy rights. Adequate de-identification techniques are essential to pro-privacy data analytics. These 
de-identification techniques should be adapted to the potential harm that may emerge from re-
identification as well as to the potential difficulty or barriers to re-identification. Seemingly anonymous 
location-based data (e.g. anonymous GPS tracks) requires particular attention since it serves a strong 
quasi-identifier in combination with other data sources. Data anonymisation or encryption should occur 
as early in the data collection and analysis chain as possible. 

4. Tamper-resistant audit logs: Every material interaction upon a data set containing personal 
information, identifiers or quasi-identifiers should be logged in a tamper-resistant manner by default 
and by design. System administrators should be subject to, and should not be able to override, this 
setting.  

5. False negative favouring: When personal data entailing civil liberties are concerned, it is better to 
design privacy protection policies that favour false negatives rather than false positives – e.g. it is 
better to miss a few things than to inadvertently make claims on the basis of personal data that are not 

7. Respect for User Privacy: keep it user-centric 
Above all, “Privacy by Design” requires architects and operators to keep the interests of the individual 
uppermost by offering such measures as strong privacy defaults, appropriate notice, and empowering user-
friendly options. “Privacy by Design” is user-centric. 

Source: Cavoukian, 2012. 
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true. Algorithmically-favouring false negatives should be the default in data collection and analysis 
systems unless there are compelling and transparent reasons for the contrary.  

6. Self-correcting false positives: With every new data point created or presented, prior assertions 
based on that data should be re-evaluated to ensure they remain correct and if not, new corrected 
assertions should be propagated backwards and forwards in real time.  

7. Information transfer accounting: Every onward transfer of data either to human observation or to 
machine systems should be logged to allow stakeholders (data controllers or data objects) to 
understand how their data is flowing and is being used. 

These hardware and system design features could go a long way to improving the systematic definition, 
tracking and application of individual privacy settings across multiple operators and jurisdictions. However, 
at present they are not bundled into any of the data protection frameworks outlined earlier. Furthermore,  
they are not operationalised in national data protection legislation or comprehensively integrated into 
industry codes of practise. Work on updating data protection practices should draw on these design 
standards in order to ensure that strong personal data protection settings are at the heart of new data 
collection and analysis efforts. This will likely entail codifying “Privacy by Design” into national and 
international personal data protection rules in a way compatible with technological developments and 
industry practices. 

Privacy and location-based data 
Personal data includes information such as name, address, sex, employment history, marital status, 
religion, finances, and unique identifiers such as passport or identity card numbers. This data can reveal 
facts that individuals may not agree to share broadly. This data can also be used to discover further 
personal information when combined with other data sources. All of the privacy frameworks outlined above 
are specifically concerned about these types of data and many efforts have gone into their protection or de-
identification. However, location data can also be seen as very personal. 

 

Box 8.  Precision of geo-location technologies 

Precision of geo-location technologies 
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Locating and tracking individuals at higher than one meter precision (up to a precision of a few centimetres) in 
both outside and indoor environments is currently feasible. It will likely become standard – at least in urban 
areas – as current location-sensing technologies become ubiquitous. In a large measure, the widespread 
penetration of mobile phone technology – and especially that of smartphones – makes this possible. The same 
location technologies deployed in the current generation of mobile phones are also migrating to vehicles 
enabling precise and persistent tracking.  

Global Mobile Subscriptions (millions) 

 

 
Source: Ericsson, 2013. 

 

In 2013, Ericsson estimates that there were 6.9 billion mobile subscriptions globally (including smartphones, 
basic phones PCs, routers, tablets and M2M devices using mobile subscriptions). All of these devices access 
cellular networks (2G, 3G, 4G LTE and others) and in so doing create a log of geo-localised data used by 
network operators to provide for seamless call service. In addition, almost all new phones (smartphones and 
basic phones) have global positioning chipsets and all new smartphones have Wi-Fi capability as well as 
numerous embedded sensors. These technologies allow operators and application developers to have access to 
extremely precise location data – an option that many app developers are exercising. In 2014, the Global 
Privacy Enforcement Network, a group of 39 national and international privacy enforcement authorities, 
conducted a review of popular mobile apps in their respective countries and regions. It found that 32% of the 
1 211 apps investigated sought access to the devices’ location data. (OPCC, 2014) Moreover, according to one 
survey in the United States, half of all mobile phone users and 74% of smartphone users use location-based 
services. (Zickhur, 2012) 

Cellular base station-based localisation 
Mobile phone connectivity requires a near-constant series of handshakes between handsets and the network via 
cellular communication antennas. These antennas, and the cells they define, are densely located in urban areas 
and less densely located elsewhere. Mobile phones regularly and frequently “ping” cellular networks in order to 
determine their location, which is calculated by determining the location of the cell antenna closest to the 
handset. This results in a precision equal to the size of the cell, which can range from a few hundred metres in 
urban areas to a few kilometres elsewhere. Cellular operators also keep track of hand-offs from one cell to 
another in order to provide seamless service while the handset is in use. In-call hand-offs and in-call dwell 
times (e.g. the amount of time an in-use mobile phone remains in a single cell) provide rough indications of 
movement and immobility. Cell antenna location data is augmented by several other techniques that account 
for return signal response time, signal strength and angular deflection. When these data are triangulated with 
signals from several other cell antennas, location precision is improved and can run anywhere from a few dozen 
to hundreds of meters. (European Commission, 2011) 
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Cellular location logs constitute large, complex and growing data sets owned and exploited by cellular network 
operators in the course of ensuring seamless phone communications. Cellular-generated location data – 
especially when linked to consumer location and demographic profiles – represent a large potential source of 
revenue for operators, e.g. by selling analyses of their own data or by selling data for analysis by third-parties. 
This data may also be relevant for certain transport policy applications. For example, by matching triangulated 
cell data with map data relating to transport networks in order to estimate traffic flows and speeds. However, 
the differential precision across large-scale areas may be problematic for some applications. 

Global Navigation Satellite System-based localisation 
Almost all new phones and all smartphones integrate a Global Navigation Satellite System (GNSS) system 
microchip that allows precision location information to be generated from one of two (and soon three) dedicated 
satellite networks. The most common of these is GPS. In open areas with clean lines of sight to at least 
4 satellites, GPS accuracy can be up to 5 metres. This accuracy degrades, however, in areas where GPS signals 
are disrupted by tall buildings or trees and inside of buildings. Assisted-GPS (A-GPS) increases location 
accuracy by combining GPS location signals with cellular location data providing sub-10 metre precision. Other 
forms of hybridised GPS location systems can provide similar levels of precision by using Wi-Fi network signals. 

Indoor localisation and tracking of Wi-Fi-enabled devices inside a conference centre 

 
Source: http://apps.opendatacity.de/relog/ 

Wi-Fi-based localisation 
Wi-Fi-enabled outdoor and indoor location sensing can deliver even greater precision by tracking individual 
media access control addresses (MAC addresses – unique identifiers allocated to individual devices such as a 
laptop computers, mobile phones, tablets, Wi-Fi-enabled cars, etc…) within a network of Wi-Fi routers and 
transponders. Wi-Fi-enabled devices set to automatically connect to one or several networks regularly ping the 
available networks in order to join to known ones. This ping contains the MAC address unique to each device 
thus enabling device location and tracking. Sometimes this ping also includes data on previous Wi-Fi networks 
the device has connected to. With sufficiently dense Wi-Fi router networks, very precise location and movement 
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Precise geo-referenced location data represents a large and growing subset of Big Data as mobile devices 
and location-sensing technologies become ubiquitous (see Box 8). Collection and use of this data helps to 
provide citizens with cellular phone service, enhanced contextual data (proximity to restaurants, friends, 

                                                 
9 Examples of geolocation service providers include Apple, Google, Skyhook, Streetlight Data, Euclid Analytics, Insoft, Navizon, 

Altergeo, Combain Services. 

data can be inferred (as illustrated in the figure above). 

Wi-Fi network configurations and node locations are also collected by numerous commercial operators 
delivering a suite of geolocation services9. These use “found” data from Wi-Fi sweeps, volunteered information 
from smartphone owners (based on automatic sensing and recording of all Wi-Fi networks detected along with 
their respective signal strengths) or Wi-Fi network managers. These inputs create very precise Wi-Fi 
“fingerprints” for individual spatial coordinates. These can then be used for locating new devices as they cross 
these coordinates. Some devices and apps regularly transmit data on Wi-Fi network “snapshots”, which can be 
used to create context-aware services. This same data, if retained on a device or a central server, can also 
serve to track the device. 

Other localisation technologies 

Additional sensors in smartphones and other mobile platforms including accelerometers, gyroscopes and 
magnetometers enhance location and tracking even when cellular/Wi-Fi connections are insufficient and GPS 
signals are degraded. For instance, merged sensor data from an accelerometer, gyroscope and magnetometer 
can help determine location in reference to a last-known GPS-determined position by calculating heading and 
speed. This type of dead reckoning enhances tracking in areas with low, or no, GPS signals (as in tunnels). 
Dedicated networks of radio frequency identification signal (tracking the location of radio frequency 
identification – RFID – tags) or Bluetooth receivers can also provide precision location data, especially inside 
buildings or structures such as tunnels. The latter is the basis behind Apple’s iBeacon location technology. 

The ability to extract precise location information from “noisy” and unstructured analogue data feeds, such as 
those produced by cameras and microphones, has advanced tremendously thanks to sophisticated image and 
audio recognition algorithms. These, combined with coupled sensing-computing chips and in-stream signal 
processing techniques, allow machines to view, classify and attach significance to what they “see” and “hear”.  

Current image recognition-based technologies (and soon, voice recognition-based technologies) ensure 
sub-1 metre precision. Tracking individual objects and people based solely on face- or voice-recognition 
technology, especially across a number of sensors, is problematic but is improving and is being deployed in 
certain commercial or law-enforcement situations. Identifying, classifying and tracking semi-structured visual 
data from video or still feeds (e.g. automatic license-plate recognition, extraction of street-sign data from a 
series of geo-referenced photographs or video) is less challenging and has already been deployed at a large 
scale. Both HERE Maps and Google extract, classify and geo-code traffic signs as recorded by their mapping 
cars.  

Machine logs recording specific and spatially localised interactions with stationary devices such as contactless 
turnstiles in public transport systems, electronic toll stations and even commercial payment card terminals 
provide a rich record of data points that can be built up to provide point-based trajectories in both time and 
space. These data allow for very precise positioning of card-holders or vehicle-based transponders but only at 
the point of interaction with the terminal. In closed systems such as freeways, travel times and speeds can be 
approximated as can passenger and vehicle flows at specific points. Additionally, fixed or mobile computers can 
be located with some level of precision by using their IP address though this data is not as precise as some of 
the other data sources discussed above 

Finally, digital pictures, especially those taken on GPS-enabled devices, often include geographic coordinates of 
where the picture was taken in the file header. Picture archives and other image posting sites can be mined for 
location histories that are associated with the pictures an individual has taken. This history can be explicitly tied 
to an identifiable person when cross-referenced with volunteered information on, for instance, social media 
sites. In aggregate, this data can help track where persons tend to congregate by examining the co-location of 
pictures in space and time.  
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etc.), navigation, traffic, or other services (e.g. meteorological updates). Location-based services are a 
growing part of the connected economy and are expected to contribute up to USD 700 billion in consumer 
surplus by 2020. The majority of this surplus (USD 500 billion or 70%) would result from time and fuel 
savings due to GPS navigation and real-time traffic services. (Manyika, et al., 2011) Location data has 
fuelled growth in the connected economy but citizens are wary of divulging too much information about 
their whereabouts and their daily behaviour. One survey indicated that over 70% of those responding want 
to have specific knowledge about when and why applications collect location data (Balebako, et al., 2013) 
and another found that citizens were increasingly concerned about the scope of location data collection. 
This concern has heightened in light of secret, large-scale and trans-border data collection efforts by 
national security agencies: 

“The legal framework surrounding the use of location-based data and tracking technologies has 
evolved more slowly than the technologies themselves. Data protection rules have primarily been 
concerned with the protection of personal data – and only incidentally concerned with other 
dimensions of privacy including privacy of the person, privacy of personal communications and privacy 
of personal behaviour (though these areas are often addressed in criminal and civil law).” (Clarke & 
Wigan, 2011) 

Location data are sourced from a number of platforms (see Box 8); mobile phone handset, tablet or 
computer, GNSS (such as GPS) receiver (e.g. in a car), Wi-Fi enabled device, video or localised machine 
tracking and logging devices (smartcard public transport turnstiles, tolling systems, etc.). The location 
accuracy derived from these methods varies in precision, reliability and timeliness. Some of the data can be 
imprecise but produced in real-time (with a lag of milliseconds to seconds), some can be very precise but 
only available ex-post via machine logs. Much of the location data produced by personal devices or 
embedded systems in vehicles, however, is both precise and delivered in nearly real-time. (Clarke & Wigan, 
2011) 

Advances in sensor platform architectures are likely to increase the amount of location-tagged data 
produced, just as the ability to process data captured in-stream becomes more prevalent and less costly. 
Semiconductor chip-maker Broadcom’s announcement of a combined GNSS chip and sensor hub into a 
single system-on-a-chip signals a new powerful class of sensing platforms. (Broadcom, 2014) These 
platforms will enable on-the-fly fusion and pre-processing of data from Wi-Fi, Bluetooth, GPS, Micro Electro-
Mechanical Systems (MEMS) auch as accelerometers, and other technologies as they become more 
widespread. (e.g. LTE networks) Due to significant claimed power savings and reduced size10, these types 
of chipsets open up new possibilities for always-on location sensing and analysis for next-generation 
portable or wearable devices. Combined sensing-processing chipsets open up the possibility for 
cryptographically treating data in real-time or for applying privacy-enhancing pre-processing, but they do 
not in themselves ensure greater privacy protection and could plausibly even erode personal data privacy 
further still. 

“You are where you’ve been” 

Rarely is the data directly linked to a unique individual – what is being tracked is a sensor-based platform. 
Objects such as these that exist in the real world (a phone, a SIM card, a car) are known as entities. 
Entities can have identities (Marie’s car, Dinesh’s phone, Jari’s SIM card) that result from the linking of an 
entity and a specific identifier (Vehicle ID number, IMEA handset number, SIM card number). However, the 
geo-spatial data collected by these devices reveals a lot about individuals. Many of these platforms 
(especially mobile handsets and car-based navigation systems) are intimately linked to one person’s activity 
patterns in time and space – not just to a specific identity number. Mobile handsets are almost always on or 
near to their owners and cars are rarely shared outside of the household.  

                                                 
10 Broadcom claims an 80% reduction in power usage and a 34% reduction in chipset area. 



50 – 3. BIG DATA, PERSONAL DATA AND PRIVACY 

BIG DATA AND TRANSPORT: UNDERSTANDING AND ASSESSING OPTIONS - © OECD/ITF 2015 

 

By looking at patterns of relative inactivity and linking these to publicly available personal and business 
registries, location data exposes a daily pattern of activity that includes where a person sleeps, where they 
work and other places they frequent. These patterns of daily activity have been found to be extremely 
repetitive and predictable. This data can reveal a person’s religion (repeated visits to a place of worship), 
their political affiliation (visits to political or NGO offices and co-location with demonstrations) and other 
information that can be inferred from where they go and where they spend time. This data can, in 
                                                 
11 See for example (Feng & Timmermans, 2013), (Hemminki, et al., 2013), (Manzoni, et al., nd), (Shafique & Hato, 2014), (Reddy, 

2010), (Susi, et al., 2013), (Stockx, 2014) and (Bernecker, et al., 2012). 

Box 9.  Transport mode detection via Smartphone sensing 

The great amount of data produced by mobile phones has created new opportunities to infer movement and 
travel-mode related information for individuals. Extracting clustered speed profiles from cellular positioning data 
has been found to be relatively robust method for making a first determination of travel mode (Wang, et al., 
2010). 

Transport mode detection – Tri-axial accelerometer profiles for various travel modes 

Adapted from (Feng & Timmermans, 2013) 

 

More recently, research has focused on extracting movement-related information from smartphone and other 
portable device accelerometers. These accelerometers provide a flow of tri-axial readings measuring acceleration 
against baseline gravitational pull. Acceleration profiles are created by sampling the data and these profiles can 
then be analysed in order to isolate unique acceleration “signatures”. Because of the close link between 
smartphones and their owners, these signatures can reveal many things about how individuals move.  

In the field of health, acceleration profiles can be used to identify gait-related pathologies such as Parkinson’s 
disease or to track daily activity (e.g. step counting or activity profiling). Gait can also serve as a biometric 
identification parameter as it is uniquely related to specific individuals.  

In the field of transport, considerable research has been undertaken to algorithmically infer mode of travel from 
acceleration profiles11. The predictive accuracy of these methods has improved greatly with some research 
indicating (much) higher than 90% correct inference across multiple modes. This accuracy has been achieved by 
using training data sets and archived data but in the near future increasingly reliable, accurate and real-time 
travel mode inference will be possible thanks to improved algorithms and in-sensor processing. 
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conjunction with similar data on other people, reveal the network of friends, acquaintances or colleagues a 
person has – especially when cross-referenced with volunteered data on social networking sites. This data 
can also reveal important and potentially significant pattern breaks that can compromise privacy (e.g. visits 
to an obstetrician’s or an oncologist’s practice). (Blumberg & Eckersley, 2009) 

Fine-scale analysis of sensor outputs in smartphones can even reveal whether a person is walking, cycling, 
driving, on a bus or in a plane or other vessel (see Box 9). 

“We know where you’ve been” 

The ability to discover personal information grows as geospatial data is accumulated and as other data 
sources become available for cross-referencing and co-mingling. Though nominally “anonymous”, the geo-
spatial trail people leave behind is in fact highly personal and unique – it is (nearly) as identifiable as a 
fingerprint (Figure 9). Trajectory-based and time-stamped location data is a potent quasi-identifier for a 
single person or persons within a single household.  

 

Figure 9.  Individuals’ time-space trajectories are powerful identifiers 

 
 

The fact that fine-grained trajectory data can be linked to specific individuals seems understandable. 
However, even coarse-grained and imprecise trajectory data can be re-identified with relatively little effort.  

Research on the privacy bounds of location data has resulted in a number of high-profile re-identification 
cases that have successfully isolated individual mobility traces from low granularity cellular base station 
data. A team of researchers at the Massachusetts Institute of Technology Media Lab analysed 15 months of 
mobile phone data for 1.5 million subscribers. They found that even for data with a temporal resolution of 
one hour and a spatial resolution equal to the cellular network’s base tower cells12, just four spatio-
temporal points were sufficient to isolate and uniquely identify 95% of the individuals. Further coarsening of 
the temporal and spatial granularity only weakly and gradually lessoned the ability to isolate unique 

                                                 
12 A few hundred metres in an urban setting, much larger distances elsewhere – see Box 8. 
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individuals. (de Montjoye, et al., 2013) Other research has confirmed the vulnerability of similarly sparse 
and coarse trajectory data to plausible and relatively straightforward de-identification and inference attacks 
resulting in re-identification rates ranging from 35% to 88%.13 

“It’s hard to hide where you’ve been” 

The difficulty with which trajectory data can be adequately and persistently protected has led some to question 
whether it is worth the effort to do so. As seen in the previous section, voices are emerging in the United States 
and from within the private sector encouraging a move away from regulating data collection – including location 
and trajectory data – and towards setting robust rules regarding the use of that data. On the other end of the 
spectrum, “Privacy by Design” advocates have stated that the risk of re-identification has been largely overstated 
and that few real cases of linking individual mobility traces to unique names, addresses, or other personal 
identifying data have been undertaken (Cavoukian & Castro, 2014)14. There is truth in both arguments.  

With time, the sophistication of de-identification algorithms is likely to grow as is the availability of other sources 
of information that could compromise the anonymity of location and trajectory data. De-identification techniques 
are a major research interest. Yet the results of this work are not confined to laboratories, but rather serve to 
generate commercially valuable data. Government agencies also use these techniques to track individuals. 
Nonetheless, de-identification attacks are not fully “trivial” – they require algorithmic sophistication, time to 
“clean” data errors, access to reliable data on personal identifiers (home address, ID number, etc.) and, most of 
all, sufficient motivation to overcome these hurdles.  

At the same time, location-based and trajectory data are difficult to fully and permanently de-identify. 
Protecting the anonymity of high dimensional data like space-time trajectories or genetic information is 
more complicated than anonymising low-dimensional data such as addresses, names, blood-type, etc.  

Anonymising location and trajectory data: four suggestions 
The most robust data protection methods should be applied to location, trajectory and other high 
dimensional personal data 

Data collectors and processors have at their disposal a multitude of de-identification techniques that range 
from simple anonymisation to cryptographic protection (see Box 10). In the case of high-dimensional 
location or trajectory-based data, there is a compelling argument to be made for using the most robust of 
these techniques and even seeking additional data protection methods. (Cavoukian & Castro, 2014) 

 

                                                 
13 See (Zhang, 2011), (De Mulder, et al., 2008) (Song, et al., 2014) and a full review of recent research on re-identification of 

trajectory data in (Gambs, et al., 2014). 
14 Of course doing so would pose ethical challenges that researchers may be unwilling to face or overcome. 

Box 10.  Anonymisation and de-identification strategies 

De-identified personal data is personal data that has had individual identifiers removed or has been modified in 
such a way as to make re-identification reasonably unlikely. This approach preserves privacy by ensuring that 
data cannot be linked to a single individual or entity (such as a car). The best way to irreversibly de-identify 
data is to delete it but this would negate any possible benefits from post-collection analysis. For this reason, 
great effort has gone into finding robust ways to anonymise data while retaining value through sufficient 
granularity. In so doing, anonymised data must be robust to three risks: 

 Singling out: individuals or unique objects should not be able to be isolated from the anonymised data 
set. 

 Linkability: single or groups of data subjects should not be able to be linked via records in the same or 
separate data sets (some techniques protect against singling out, but not against linkability). 
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 Inference: attributes of an individual or a group of data subjects should not be possible to deduce from 
the values of other attributes. 

Data de-identification techniques, and in particular techniques for de-identifying location and trajectory data, is 
a rich and continuously evolving research topic. This evolution is necessary given the growing sophistication of 
re-identification and inference-based attacks on de-identified location and trajectory data. There are 3 broad 
approaches to preserving privacy through the anonymisation of location and trajectory data: randomisation, 
generalisation and pseudonymisation/encryption. 

Randomisation-based approaches alter the nature of data in order to reduce its representation of reality. In 
doing so, these approaches seek to render data sufficiently uncertain so that they cannot be inferred to a single 
individual.  

Randomisation techniques include “salting” data sets with spurious elements. “Salting” is not a robust 
standalone anonymisation technique. Should the noise added to the data set fall out of a credible range – or be 
semantically inconsistent with “real” values – then these elements can be identified and stripped from the data 
set negating the anonymisation effort. At the same time, sufficient noise should be added to adequately 
degrade the representativeness of the data set but this can reduce the value of the data set. Further, the data 
set still must have direct identifiers stripped from it prior to processing.  

Permutation-based approaches, where some values are shuffled amongst data set records so as to create 
artificial records, preserve the distribution of values within a data set but degrade the traceability of individual 
records to unique individuals. However, permutation fails to anonymise data adequately if the some attributes 
are strongly correlated and can thus be inferred even if values are permuted. Permutation, like data set 
“salting”, is not a sufficiently robust anonymisation technique. 

The above techniques insert noise upstream to its use. “Differential privacy” describes a technique whereby 
noise is added to query responses made on an original data set. In this context, the anonymisation of the data 
is operated on the fly in response to third-party queries. Repeated and targeted queries, however, can isolate 
key elements of the data and lead to its re-identification. This approach requires monitoring and actively 
controlling data queries so as to counter this risk as well as ensuring that sufficient noise is added to query 
responses. 

Generalisation 
Generalisation-based approaches de-identify data by grouping attributes in increasing units of magnitude so as 
to erase their individual identities – e.g. grouping responses by census blocks rather than by individual 
addresses, or by month rather than by day. This approach is robust to singling out but requires sophisticated 
and targeted techniques to protect against linking and inference-based re-identification attacks.  

Generalisation-based approaches include grouping records such that they are indistinguishable from a defined 
number of other records or by only identifying records based on interval values (06:00-09:00 hrs, 
30-50 kilometres per hour, census blocks regrouping at least 200 households, etc.). However, with sufficiently 
strong quasi-identifiers that are not themselves generalised and insufficient clustering, generalised data sets 
can be re-identified. One way of increasing the robustness of generalisation techniques is ensuring that 
generalised classes of attributes contain a sufficiently broad range of values and distribution. To do so the 
distribution of the values in each generalised attribute class must mirror the range of attribute values within the 
entire data set (in order to prevent inference attacks based on differential attribute distribution). Nonetheless, 
the increasing sophistication of re-identification algorithms and the availability of data sets that can be used in 
inference attacks continue to erode the ability for even the best generalisation-based techniques to protect 
anonymity.  

Privacy by pseudonymisation/encryption 
Pseudonymisation is a security-enhancing rather than an anonymisation technique per se. It consists of 
replacing one attribute (typically a direct identifier) with another unique value. As such it reduces the linkability 
of a data set but does not impact the data set’s vulnerability to singling out or inference attacks. 
Pseudonymisation can be independent of the original data as in the case of a random number assigned to the 
attribute or in the case of a username assigned by the data subject. Pseudo-identities or values can also be 
directly generated from the original data via the use of a hash function or an encryption key. In the case of 
single-key pseudonymisation, direct identifiers may be hidden but the data sets remain vulnerable to singling 
out, linking and inference-based attacks, especially for location or trajectory and other high-dimensional data.  
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Though data collectors may argue that location and trajectory data are de-facto anonymous, this is clearly 
not the case since the geo-spatial component of the data is itself a powerful quasi-identifier. (Gambs, et al., 
2014)15 The next step of location data protection – simple anonymisation or pseudonymisation – is only 
possible when geospatial data are associated with straightforward data identifiers (such as name, address, 
etc.) that can be redacted or given pseudonyms. Neither of these approaches should be considered an 
adequate basis for de-identification especially in the context of associated geospatial coordinates. 
(Cavoukian & Castro, 2014) 

Efforts to anonymise location and trajectory data by clustering points or traces into larger groupings of like 
data can improve anonymity. Numerous researchers have studied such generalisation-based approaches. 
However, there is a risk of re-identification even from aggregate data if the aggregation ignores particular 
characteristics of the data set. Unsophisticated clustering techniques – such as aggregating data by 
obfuscating data or by adding spurious data – can help but sufficiently large sets of location-based or 
trajectory data can nullify the impact of such data “noise”. 

Effective protection of location, trajectory and other high dimensional personal data should combine both 
anonymisation and encryption 

Neither anonymity nor pseudonymity, nor clustering nor obfuscation prevents location-based data from 
being transmitted, interpreted and exploited. The data is still composed of recognisable “plain text” 
latitudinal, longitudinal and time-referenced character strings albeit at different levels of coarseness. 
Cryptographic methods, on the other hand, remove the ability to interpret the geospatial data by 
transforming it cryptographically. Only those with the appropriate key can convert the cipher back into plain 
text and then exploit the geospatial elements of the record. 
                                                 
15 It is for this reason that the proposed EU General Data Protection Directive explicitly defines location data as “personal data”. As 

such, location data would fall under the scope of that Directive (as transcribed into national legislation) and be subject to strong 
requirements regarding notice and consent before collection. 

Encryption-based approaches can effectively secure data from unauthorised access and use by, in effect, hiding 
the data rather than anonymising it. The level of protection offered by encryption is related to the type of 
encryption employed. Encryption locked by a single key is only as effective as the security of the key. 
Sophisticated decryption algorithms, vulnerability to brute force attacks and the ability to mobilise large and 
scalable computing resources to break encryption keys justify the use of extremely secure encryption keys. If 
the key is compromised, either by breaking or by obtaining it from human operators, then personal or location 
data is fully accessible.  

Data sets encrypted by hashing involve producing a fixed-sized encrypted output from an input variable of 
differing sizes. Hashing is irreversible but not immune to re-identification attacks if the input values are of a 
fixed size and the full range of input values are otherwise known. In this case, the attacker simply has to run all 
known attribute values through the same hashing method to derive a table of corresponding hash-original 
values. This can then be used to single out, link or infer unique individuals and relationships between attributes. 
In a recent example of the shortcomings of insufficient hash encryption, the city of New York released an 
extensive data set of individual taxi trajectories comprised of 173 million geo-referenced records. The principal 
identifying features, the hack licence and medallion numbers were hashed using a well-known algorithm which 
encrypted them irreversibly. The rest of the data, including time stamps, location and trajectory data, were 
provided in open text. Because of the invariant format of both taxi license and medallion numbers, it was trivial 
to run all possible iterations of these numbers through the same encryption algorithm and find matches in the 
released hashed data. In less than two hours, all 173 million records had been de-anonymised and linked to full 
details available in other data sets recording taxi license holders. (Goodin, 2014) 

The above example illustrates not that encryption itself is an insufficient technique to protect personal data but 
rather that poorly designed encryption methods are vulnerable. Adding noise to the attribute to be hashed 
(“salted” hash), combining the hash function with a secret key, or individually hashing each attribute and 
deleting the correspondence table would have more effectively protected the database from re-identification.  
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Cryptographic protection of location and trajectory data seems a promising approach and one that has 
attracted considerable attention. On-the-fly encryption and de-encryption is facilitated by the emergence of 
“sensors-on-a-chip” that can sense, compute, encrypt and transmit data in real time. Such encryption 
allows trusted communication between devices that handle mission-critical tasks (e.g. communicating 
location, heading, speed, system state between vehicles, or between infrastructure and vehicles, in a 
complex traffic environment). It can also serve to protect and enforce rights associated with personal data, 
including location-based data. Encryption-based approaches, however, require sufficiently robust and 
secure system architecture to manage encryption keys, trusted identities and certificates. Public key 
infrastructure (see Box 11) ultimately requires buy-in from a broad cross-section of actors and a trusted, 
likely public body, to manage identity certification in an international context.  

 

Box 11.  Encryption and public key infrastructure 

Public key protocols could contribute significantly to the protection and trustworthiness of essential data 
whether in the case of encrypted communications between connected devices (e.g. cars, infrastructure, etc.) or 
in the case of personal data protection and management systems. 

In information security, certification refers to the issuing of certificates used for security verification of 
messages between systems. Those certificates in fact contain a public key, i.e. a key that can be used to verify 
the electronic signature that is appended to a message. 

The different certificates and certifying entities may be addressed in different ways. For example, pseudonym 
certification authorities are also referred to as authorisation authorities, while pseudonym certificates are 
referred to as authorisation certificates, authorisation tickets or short-term certificates. Long-term certification 
authorities also go by the names enrolment authority or enrolment credentials. 

Communication and data exchange requires trust and robust anonymity 
Cooperative ITS systems (C-ITS) depend on managed and trusted access in order to allow the communication 
of essential data without compromising the security or privacy of system users. These systems must ensure 
that, firstly, the messages that are exchanged are authentic messages, i.e. they originate from the source they 
claim to have come from; and secondly, that the anonymity of the users is assured. This can be done by 
verifying the message's signature. 

To give an example: A car senses a slippery stretch of road and slows down. It warns the vehicles around it 
that it is slowing down and the road is slippery. The infrastructure also receives this message. The road 
operator spreads the warning further and looks into causes and remedies to the situation. How do the road 
operator and the other cars know that this message has not been sent from, say, a non-C-ITS device on the 
roadside or the source of the message has been hacked? Furthermore, the individual motorist has to be sure 
that no movement can be tracked by unauthorised actors. In another example, an individual may authorise a 
data collector to collect and use data for a specific application. How can this authorisation be authenticated and 
traced to the specific permission granted by the data subject? 

The recipient of a message has to trust the source of the message in order to be able to verify the message 
security. In ITS communications, trust is the confidence that a particular public key belongs to the entity 
claimed, which ensures that the corresponding signature has been really provided by the entity. This is done by 
a dedicated arrangement called Public Key Infrastructure (PKI), composed of certification authorities that 
confirm the ownership of a public key by an entity i.e. by issuing a public key certificate, which is an electronic 
document that binds a public key with an identity, as stated in the certificate. PKI architecture is a system 
design safeguard against abuse and a mean to protect the privacy of the user. 

The masquerade  
The analogy of a masked ball can help to illustrate the trust relationships embedded in public key architecture. 
The masquerade has certain rules: 1) Guests must stay anonymous at all times; 2) an invitation to the ball 
entitles guests to collect masks at the wardrobe; 3) guests can only trust other masked people and anybody 
can listen to the conversations among masked guests; 4) only friends of the host are invited; 5) masks are 
differentiated but they are all identifiable as having been distributed by the host (e.g. they display different 
features but they are all red - the identifier for the host’s masks). The invitation itself is anonymous –guests’ 
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names are not revealed. 

Guests enter the ball and produce their invitation at the wardrobe where they receive a mask. All masked 
guests can be trusted because they are all friends of the host. Still guests do not reveal their identity to others 
and may return often to the wardrobe for a new mask. The host of the ball is not the owner of the house where 
the ball takes place – but the owner of the house has given the host permission to hold the ball and distribute 
masks in the wardrobe – as long as these are only distributed to trusted friends of the host. 

Like the guests at the masquerade C-ITS equipment wears a mask when it communicates. The receiving C-ITS 
hardware: 1) looks at the mask and 2) believes the message, because it recognises the mask the sender wears 
(e.g. it is red). It does not identify the sender’s identity. The wardrobe where guests collect their masks in this 
metaphor is the pseudonym certification authority. The host who has issued invitations to the masquerade 
takes the role of what in C-ITS would be the long-term certification authority. The owners of the house where 
the ball is held take the role of the root authority that controls the complete system. In C-ITS terms this system 
would be called a public key infrastructure or PKI. 

How can trust be established between the different players in C-ITS? In particular, how, from a technical 
perspective, can trust be communicated and messages technically masked in a secure manner? Furthermore, 
how can trust be established institutionally, meaning how should a body trusted be structured? 

Certificates mean trust 
The masquerade is based on trust. Trust in this analogy is communicated via:  

 The invitation; guests received this from the host. The invitation also provides assurance that the 
owner of the house has authorised the host to hold the masquerade. 

 The mask; whoever wears a mask is a friend of the host and can be trusted by other guests. The 
invitation and the mask represent so-called certificates. The invitation represents the long-term 
certificate, the mask that is frequently changed during the party represents the so-called pseudonym 
certificate. 

 The glance between guests; those at the party, when they see another masked guest, can be 
confident that that person is a friend of the host and hence trustworthy. 

How does this work technically? When sending a message the C-ITS equipment sends three items: 1) the 
message (in the analogy: the content of guests’ conversation); 2) the certificate itself that will allow any C-ITS 
recipient to verify the signature (in the analogy: the mask); 3) the signature it generated from the currently 
valid certificate and that particular message (in the analogy: the glance of the mask and hearing the voice of 
the masked person). The signature and the certificate are pieces of data generated using mathematical 
algorithms. 

The mask and wardrobe: pseudonym certificates and pseudonym authorities  
Pseudonym certificates serve the purpose of anonymising the movement of a piece of C-ITS equipment. They 
are the mask in the analogy. The C-ITS equipment changes them on a frequent basis. The movement of the C-
ITS equipment cannot be tracked by the recipient or a series of recipients, since the C-ITS equipment changes 
its certificate on a regular basis. 

The C-ITS sender receives its pseudonym certificates from the pseudonym certification authority – at the 
masquerade this would be the wardrobe. The pseudonym certification authority has the task to make sure the 
C-ITS equipment requesting the certificates is authorised to send C-ITS messages, meaning it is not stolen, 
hacked or damaged. It needs to check the authenticity of the C-ITS equipment, but it should not know the 
owner. Only if the pseudonym certificate is not directly linked to the owner of the C-ITS equipment can the 
C-ITS equipment transmit its messages anonymously. At the wardrobe, this is done by checking the invitations 
of the guests, rather than by knowing the guests themselves. Guests are trusted if they have an invitation and 
are thus issued a mask necessary to communicate in a trusted fashion with other guests. 

The invitation and the host: long-term certificates and long-term authorities 
The long-term certificate has the objective of shielding the identity of the owner of the C-ITS equipment. It 
stays with the equipment for longer periods of time, just as the invitation is valid for the whole party (whereas 
you change masks several times during the party). The long-term certificate of the C-ITS equipment is used to 
request pseudonym certificates from the pseudonym certification authority. The pseudonym certification 
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The limits of existing data protection strategies are being reached. The 21st century will require a “New Deal 
on Data” to fully protect consumers and unleash innovation 

The critique of existing data protection frameworks and the divergent set of proposed remedies outlined in 
this section 3 highlight the need for an updated approach to personal data ownership as opposed to 
protection. Projected changes in data collection technology, coupled with increasing unease over ubiquitous 
data collection signal the limitation of incremental approaches. In this context, some have called for a 
fundamental reformulation of data protection efforts – a “New Deal on Data” that re-charts the relationship, 
respective roles and responsibilities and the nature of interactions between data subjects and producers and 
data collectors and users. (Pentland, 2009) 

The approach outlined by proponents of the “New Deal on Data” emphasises data subjects’ ownership of 
their own data as opposed to ownership granted to data collection entities. In this sense, the “New Deal” 
approach proposes granting individuals the same rights over the disposition and use of their data as they 
have over their bodies and their money. 

New data collection system architectures would be needed to operationalise this approach to data 
ownership. Central to these would be the notion of a personal data locker or store. A personal data store 
centralises all data associated with a single individual. This individual exercises full and granular control 
over access to that data according to their express preferences. This approach changes the current 
paradigm of collector-owned data and creates a market for access and use of personal data. Access can be 

authority can use it to check the authenticity of the equipment it deals with. The pseudonym certification 
authority only knows the long-term certificate. It will not know the owner of the C-ITS equipment or the vehicle 
it is installed in or, in the case of roadside equipment, the location where it is installed. The long-term 
certificates are issued by the so-called long-term certification authority. In our metaphor this role is taken by 
the host. The long-term certification authority is independent from the pseudonym certification authority just 
like the wardrobe is independent from the host. The long-term certification authority (the host) knows the 
owner of the C-ITS equipment. 

Permission to hold the ball by the owner of the house: authorisation and root certification authority 
The C-ITS equipment needs to know if the pseudonym certification authority is itself authorised to issue 
pseudonym certificates. It does this by checking the status of the pseudonym certification authority’s own 
certificate. In our metaphor this would be trust in the owners of the house. They allow the ball to take place in 
the first place and condone the distribution of masks in the wardrobe. The root certification authority will issue 
each pseudonym certification authority a pseudonym certification authority certificate that is used to produce 
the pseudonym certificates. It does this only if the pseudonym certification authority complies with all its 
obligations. The root certification authority supervises the various pseudonym certification authorities.  

The same counts for the long-term certification authorities. If the long-term certification authority is compliant 
with its obligations, the root certification authority will issue each long-term certification authority a long-term 
certification authority certificate that the long-term certification authority uses to generate long-term 
certificates for the C-ITS equipment. In the masquerade analogy, guests assume that if the host has issued an 
invitation, she will have done so with the approval of the house owner. 

Every PKI can only have one root certification authority. It publishes the requirements for pseudonym 
certification and long-term certification authorities and checks applicants’ suitability to play these roles. It also 
controls if existing authorities adhere to the rules. 

The house owner: policy authority 
In our metaphor it is the house owner who decides that the host may invite friends over and to allow the 
distribution of masks from the wardrobe. These decisions are in fact policy decisions. Here the metaphor does 
not match exactly, since in a PKI architecture the policy authority is separate from the root certification 
authority. The policy authority does not issue any certificates. It defines C-ITS PKI policy, the rules to which the 
root certification authority, the pseudonym certification authority and the long-term certification authority 
adhere to. It also supervises the root certification authority. 
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given to third parties that promise sufficient value but, since ownership and control of the data remains 
with the data subject, this access can be revoked at any time. This would no-doubt require the 
development of new business models for monetising use of this data, but would ensure a robust and 
conscious protection of individual privacy preferences16.  

Proponents of the “New Deal on Data” have developed an open source framework for such a personal data 
store (openPDS) and are trialling it. Results are promising and include the finding that greater control over 
data ownership leads to greater data sharing (seemingly in response to heightened trust that data users will 
conform to specific individual wishes in a transparent and auditable manner). (HBR, 2014) 

Novel data protection mechanisms can develop around the concept of personal data stores. One such 
mechanism – SafeAnswers – promises robust protection of high dimensional personal data, while at the 
same time allowing open access to the data itself. (de Montjoye, et al., 2013) This mechanism is built 
around data users submitting code snippets that mediate on individuals’ raw data in their personal data 
store without releasing any of that data itself. Under a personal data store framework, the SafeAnswers 
approach calls for potential data users to submit a request for information regarding an individual’s data. 
The question could be “is the individual close to my store?”, “how much time does the individual spend in 
traffic on a weekday?” or “does the individual use the underground on weekends? If the individual accepts 
that request (perhaps granting this acceptance in return for a service or other form of compensation from 
the data user), the data user submits a standardised snippet of code that then interacts with the user’s 
personal data store, querying GPS log data, accelerometer data, or other form of location/trajectory data 
required to answer the question. The answer is sent back to the data user without sensitive location or 
trajectory data ever having been divulged. This approach outlines how novel data ownership rules may be 
required before conflicting demands for data protection and increased innovation can be reconciled. 

New models of public-private partnership involving data-sharing may be necessary to leverage both public 
and private benefits 

                                                 
16 For a full discussion of the operational aspects of the “New Deal on Data”, see (de Montjoye, et al., 2014) and (HBR, 2014). 

Under existing data ownership rules a significant amount of the actionable data pertaining to road safety, 
traffic management and travel behaviour is held by the private sector. Should data ownership rules 
change along the lines of “A New Deal on Data”, individuals would retain ownership and control use of this 
data. Under both data ownership frameworks, public authorities will likely continue to be mandated to 
provide essential services. In this context, much as public authorities have coercive ability to require 
access to personal data (e.g. on property ownership, personal revenue, criminal records), there may be 
scope to define public-access data sets that are built on aggregated personal location and trajectory data. 
These data could relate to traffic flows, crash locations and causes (as reported by embarked-vehicle ITS 
systems), as well as crowd density, location and movement data. This would entail a move away from the 
supplier-client relationship that some authorities have with data collectors. Recent moves by some data 
collectors to share their data with public authorities (e.g. Uber in the Boston area) show that more 
creative partnerships can be developed that enable both the private sector to innovate and the public 
sector to carry out its mandates. However, work will be required to define the scope and scale of data 
access by public authorities and, in particular, to ensure that the collection of such data is in line with 
public mandates.
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