Relating Freeway Traffic Accidents to Inductive Loop Detector Data Using Logistic Regression

Junhyeong Park, Graduate Student Researcher Cheol Oh, Ph.D. Assistant Professor Department of Transportation Systems Engineering Hanyang University at Ansan

Contents

1. Introduction

2. Data Preparation

3. Methodology and Model Development

......

4. Application and Technical Issues

5. Conclusion

01011010

1. Introduction

🥟 Background

1. Introduction

Background

1. Introduction

- 🥟 Data
 - Seohaean Freeway : Seoul Mokpo(339.51km)
 - Seohaean freeway loop data from detectors and traffic accident data for 3 years - 2004, 2005 and 2006
 - Occupancy, Speed, Volume

Traffic accident data	Loop data
D Hall I	 < VDS Hourly DATA >
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Derivation of explanatory variables for traffic conditions

2. Data Preparation

Conceptual illustration for loop detector data processing

2. Data Preparation

Loop data processing procedure

Result of Model Development - Case 4

• R-square

CASE	-2 Log	Cox와 Snell의	Nagelkerke	Number of
	Likelihood	R-Square	R-Square	accident
CASE 4	264.329	0.226	0.301	142 건

• Correct classification Rate(CCR)

CASE			Predicted									
	Observed		Accident Occurrence		Percent Correct (%)	Accident Occurrence		Percent Correct (%)	Accident Occurrence		Percent Correct (%)	
			0	1	0.5	0	1	0.7	0	1	0.8	
case4	Accident Occurrence	0	89	25	78.070	108	6	94.737	112	2	98.246	
		1	37	83	69.167	77	43	35.833	82	38	31.667	
	Total %				73.504			64.530			64.103	

Result of Model Development - Case 4

• Significant Variables

CASE	Variable	Beta	Sig.		
	up1_t1_O	0.63607	0.03142		
	up1_t2_V	-0.00701	0.03692		
	up2_t1_0	-0.54779	0.02818		
	up2_t2_V	0.00671	0.01903		
case 4	up1_t1_DO	-1.23492	0.01089		
collision and rear-	up1_t2_DO	1.11977	0.02173		
end collision	up2_t1_DS	0.06987	0.05738		
	dn2_t1_DV	0.00816	0.00346		
	dn2_t1_DS	0.20489	0.00047		
	dn2_t2_DS	-0.12514	0.02855		
	Constant	-1.13773	0.00013		

Significant traffic variables for accident likelihood

• Significant traffic variables in Case4

\backslash	Up2		Up1			Dn1		Dn2	
t-30min	up2_t2_0	up2_t2_DO	up1_t2_0	up1_t2_DO		dn1_t2_0	dn1_t2_DO	dn2_t2_0	dn2_t2_DO
	up2_t2_V	up2_t2_DV	up1_t2_V	up1_t2_DV		dn1_t2_V	dn1_t2_DV	dn2_t2_V	dn2_t2_DV
(12)	up2_t2_S	up2_t2_DS	up1_t2_S	up1_t2_DS		dn1_t2_S	dn1_t2_DS	dn2_t2_S	dn2_t2_DS
	up2_t1_0	up2_t1_DO	up1_t1_0	up1_t1_DO		dn1_t1_0	dn1_t1_DO	dn2_t1_0	dn2_t1_DO
t-15min (t1)	up2_t1_V	up2_t1_DV	up1_t1_V	up1_t1_DV		dn1_t1_V	dn1_t1_DV	dn2_t1_V	dn2_t1_DV
((1)	up2_t1_S	up2_t1_DS	up1_t1_S	up1_t1_DS		dn1_t1_S	dn1_t1_DS	dn2_t1_S	dn2_t1_DS
	up2_t_0	up2_t_DO	upt_t_0	up1_t_D0	Acc	dn1_1_0	dn1_t_DO	dn2_t_0	dn2_t_DO
t	up2_t_V	up2_t_DV	upl	upl_t_DV	Occurre-	dn	dn1_t_DV	dh2_t_V	dn2_t_DV
	up2_t_S	up2_t_DS	up1_t_	I_t_DS	nce	dn1_t_	dp1_t_DS	dn2_t_s	dn2_t_DS
	<u>[]</u> 		<i>D</i> 	Z	10.0	<i>[]</i> [] [][] [][]		<u>[][</u>] [][

Accident Likelihood

 Estimate probability of accident likelihood using Binary Logistic Regression $\Pr(ACC_{i} = 1 | X_{i}) = \frac{\exp[f(X_{i}, \beta)]}{1 + \exp[f(X_{i}, \beta)]}$

 $f(X_i,\beta) = 0.636X_1 - 0.007X_2 - 0.548X_3 + 0.006X_4 - 1.235X_5 + 1.120X_6 + 0.070X_7 + 0.008X_8 + 0.205X_9 - 0.125X_{10} - 1.138X_{11} - 0.007X_2 - 0.0$

up1_t1_0	up1_t2_V	up2_t1_0	up2_t2_V	up1_t1_DO	up1_t2_DO	up2_t1_DS	dn2_t1_DV	dn2_t1_DS	dn2_t2_DS	상수
0.63607	-0.00701	-0.54779	0.00671	-1.23492	1.11977	0.06987	0.00816	0.20489	-0.12514	-1.13773

4. Application and Technical Issue

Application

4. Application and Technical Issue

Technical Issue

Resolution of traffic data

 Duration and frequency for warning information provision

5. Conclusion

Future studies

- Adaptive Variable Speed Limit system
- Study for various traffic accident type and model application
- Field tests for enhancing transferability

5. Conclusion

🥭 Conclusion

- Proposed a model to estimate traffic accident likelihood using real-time traffic data
- Application for Warning information and VSL
- Proposed system can lead to safer driving leading to accident prevention

