Assessing the long-term impact of air liberalization on international air passenger demand

A new model up to 2050

Vincent Benezech, Luis Martinez, Jari Kauppila

International Transport Forum at the OECD

Transportation Research Board 95th Annual Meeting

Washington, DC – 11 January 2016
Introduction

- Part of the work for the ITF Transport Outlook
 - Long-term trends (2030-2050)
 - Analysis of policies on a global scale
 - Scenario-based analysis
Geographical approach

- World divided into 310 regions
- Synthetic network between the regions
Modelling approach

Origin-destination demand
- Gravitational model

Socio-economic variables
- GDP, trade, population

Cultural proximity variables
- Language, emigration

Supply
- Min travel time, min number of transfers

Route choice
- Logit model

Route characteristics
- Reconstructed from air network
Calibration

- Route choice model
 - MIDT route choice data for years 2014-2015
 - Maximum-likelihood estimation
 - Coefficients very significant but overall fit not very good

- Origin-destination demand model
 - Historical on-flight passenger volumes
 - Estimation: minimize differences between observed and estimated on-flight demand on all links

- Average error on link: 12%
Air liberalization

- Decrease in price
 - Competition
 - Low cost carriers

- Increased connectivity

Transport demand
Competition

- Herfindahl–Hirschman Index (h-index) between pairs of region
 - With frequency
 - Alliance level
- Includes indirect frequencies
 - Weighted for quality of service
Prices in the models

Average price as a function of distance for direct intra-Asia flights in the database

- **In monopolistic environment**
 - Network carrier

- **In competitive environment**
 - Low cost carrier

Route choice
- Nested logit model

Kilometric price
- Number of transfers
- Competition (h-index)
- Low-cost carrier

International Transport Forum

Skyscanner
Prices in the models

<table>
<thead>
<tr>
<th>Origin-destination demand</th>
<th>Route choice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravitational model</td>
<td>Nested logit model</td>
</tr>
</tbody>
</table>

Competition
- H-index
- LCC

Kilometric price
- Number of transfers
- Competition (h-index)
- Low-cost carrier
Link creation

- Binomial model
 - Economic mass
 - Distance
 - Competition levels

GDP mass necessary for link creation as a function of distance

- In monopolistic environment
- In competitive environment

Graph showing the minimum GDP product (log-scale) as a function of distance (km) for two different environments.
Network development scenarios

Static network
- No evolution of price
- No new link created

Dynamic network
- Competition
- Strong penetration of low-cost carriers
- Free network evolution

Intermediate
- No exogenous increase in competition
- Controlled network evolution
Result overview

Static network

- **2010-30**: 2.7%
- **2010-50**: 2.6%

Intermediate

- **2010-30**: 4.3%
- **2010-50**: 3.9%

Dynamic network

- **2010-30**: 5.7%
- **2010-50**: 4.7%

International revenue passenger kilometres

Annual growth rate (CAGR)
Conclusion

Coherent global framework

Network evolution model based on scenarios

Analysis of policies globally

« Large » model

Redefinition of key levers

Is the necessary growth possible?
Thank you for your attention