

5th conference

Transport Solutions: from Research to Deployment Innovate Mobility, Mobilise Innovation! Paris - La Défense CNIT, 14 - 17 April 2014

An overview of promising and not promising countermeasures

Dr. Anna Anund

2014-04-15

TRA2014 Paris 14-17 avril 2014

Countermeasures at a pre-crash level

Strategic	Tactical	Operative
Fatigue management systems	Driver support system (feedback – warning)	The infrastructure rumble strips
Hours of service regulations	Road signs	Driver support systems (warning & intervention)
Information/Education	Parking areas	
Strategies for planning	Route guidance to parking areas	
Fit for duty test		
Enforcement/Control		

Inspired by Michon (1985)

Fatigue (Active or Passive) - Sleepiness

May and Baldwin, 2009

Anund et al. 2009

Preference for a nap differ with driver group

	Efficient		
	= stop for a nap		
	Odds	95% CI	р
Model with univariate predictors	Ratio		
Age			
18–25			
26–45	1.22	0.82-1.83	0.32
46–64	1.86	1.28-2.70	<0.01
65 or older	1.01	0.68-1.50	0.97
Gender – Male vs female	2.83	2.04-3.93	<0.01
Higher education vs lower	1.28	0.98-1.66	0.07
Professional drivers vs non prof	3.43	2.05-5.73	<0.01
Exp of sleepy driving vs not	2.76	2.11-3.60	<0.01
Exp of sleep related crashes vs not	2.80	2.01-7.19	<0.01
Shift workers vs day workers	1.25	0.87-1.81	0.23
Persistent sleepiness vs not	0.87	0.60-1.25	0.45
Snoring vs not	1.70	1.16-2.50	<0.01
Poor sleep quality vs good	1.43	0.88-2.32	0.15
Sleep duration < 6h vs more	1.74	1.30-2.32	<0.01

Functional energy drink = YES

DRIVING INCIDENTS - Active Vs Control Drink

(Reyner et al. 2001)

vti

Caffeine = YES Nap = YES Caffeine & Nap=YES (even better)

(Horne et al, 1996; Reyner et al. 1997; Philip et al. 2006)

Cold air = NO Radio = NO (tendency)

Reyner et al. 1998

vti

Radio or open window – not for sleepiness

Schwarts et al 2011

Blue light = YES

Taillard, J. et al. 2012

- Detection popular but most drivers already know
- Warning not so popular but what is needed to convince a sleepy driver to stop?

Independent evaluations is needed

Infrastructure rumble strips = YES

110 km/h - mv

90 km/h – 1+1 Normal (8-10m) Killed and severe injured **- 7%**

Narrow (<8m) Killed and severe injured - 30%

(If we adjust for the regression effect those figures increase)

Single killed or sever injured - 30 %

(correcting for regression effects)

Conclusion

- Countermeasures are available and needed
- Awareness and knowledge of not promising countermeasures are important
- Parking areas attractive to stop at is necessary
- Rumble strips are effective
- Driver support system is promising but the reason behind needs to be considered
- More focus on the warning concept is needed
- Fatigue management is coming....
- Do not forget those that reduce the sleepiness development like sound, road environment etc.

Thank you for listening! Questions: anna.anund@vti.se

TRA2014 Paris 14-17 avril 2014