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Abbreviations and acronyms 

ADAS Advanced driver assistance systems 
ADS Automated driving system 
ADS-DV Automated Driving Systems – Dedicated Vehicles 
AI Artificial intelligence 
ASDE Authorised Self-Driving Entity 
AV Automated Vehicle 

* In this report, AVs refer to highly or fully automated vehicles corresponding to SAE J3016 
Level 4 and above that does not require human involvement in performing driving tasks 
within designated ODDs (see Box.1) 

DDT Dynamic driving task 
DMV Department of Motor Vehicle 
EIBD Explainable and Interpretable by Design 
EM Emergency Manoeuvre 
FHWA Federal Highway Administration 
GDPR General Data Protection Regulation (EU) 
GPS Global positioning system 
ITF International Transport Forum 
LDM Local dynamic map 
LIDAR Light detection and ranging 
MRM Minimum Risk Manoeuvre 
NHTSA National Highway Traffic Safety Administration 
NUiC No-user-in-charge 
OBU On-board unit 
ODD Operational design domain 
OEM Original equipment manufacturer 
PTO Public transport operator 
R&D Research and development 
RSU Roadside unit 
SAE Society of Automotive Engineers 
TEVV Test, Evaluation, Verification and Validation 
UiC User-in-charge 
UNECE United Nations Economic Commission for Europe 
V2I Vehicle-to-infrastructure 
V2V Vehicle-to-vehicle 
V2X Vehicle-to-everything 
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Glossary 

Automated driving system The hardware and software that are collectively capable of performing 
the entire DDT on a sustained basis, regardless of whether it is limited 
to a specific operational design domain (ODD); this term is used 
specifically to describe a Level 3, 4, or 5 driving automation system. 
(SAE International, 2021a) 

Authorised Self-Driving Entity The entity that puts an AV forward for authorisation as having self-
driving features. It may be the vehicle manufacturer, or a software 
designer, or a joint venture between the two. 
(Law Commission of England and Wales & Scottish Law Commission., 
2022) 

Automated Vehicle A motor vehicle equipped with ADS and thus capable of performing 
dynamic driving tasks. (see Box.1 for further details on the usage of the 
word in this report) 

Explainability The property of an AI system to express important factors influencing 
the AI system results in a way that humans can understand.  
ISO/IEC 22989:2022(en), 3.5.7 

Interpretability The property of an AI system that elements or features can be assigned 
meanings. DIN SPEC 92001-3:2023-04 

Positive Risk Balance (PRB) The proposition that a computer driver should be no less safe (and 
ideally safer than) a human driver.  
Koopman & Widen, 2023Koopman & Widen, 2024 

Robustness The degree to which an AI system can maintain its level of functional 
correctness under any circumstances. 
ISO/IEC 25059:2023(en) 

Safety-critical system A safety-critical system describes a system that directly affects the 
safety, health and welfare of the public and whose failure could result 
in critical safety issues such as infringements of privacy, financial loss, 
environmental harm, serious injuries, or loss of life. 
 (Laplante et al., 2020; Moteff & Parfomak, 2004; Srinivas Acharyulu & 
Seetharamaiah, 2015) 

Trustworthiness Ability to meet stakeholder expectations in a demonstrable, verifiable 
and measurable way 
ISO/IEC 20924:2024(en), 3.1.33 
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Executive summary 

What we did  

This report examines the main challenges that Artificial Intelligence (AI) poses in automated transport 
systems and the regulatory approaches to address them. These diverse challenges broadly relate to 
technical, regulatory, economic, societal and environmental issues, including issues relating to training data 
quality and representation, development and verification of AI models, increased vehicle travel and land-
use impacts, deskilling vehicle operators and wider labour impacts. The report provides a common 
understanding of AI-based automated transport systems and the principles that can form the basis of 
institutional and regulatory actions to increase the safety and social acceptability of using AI-based 
transport systems. The report is based on discussions held at an ITF Roundtable in January 2023 and 
materials prepared for it. While recognising the unique specificities of each transport mode, this report 
mainly focuses on the automation of road vehicles. Nonetheless, some lessons from road automated 
vehicles (AVs) will be applicable to regulations on AVs in other domains. 

What we found 

The automated operation of vehicles – whether based on or supported by AI applications – holds great 
potential to meet future mobility needs in an efficient and safe manner. To realise the full potential of 
automated transport, two essential conditions must be met to ensure its safe and secure delivery: 
trustworthiness and dependability. Overcoming technical and regulatory challenges and minimising risks 
will help enhance social acceptance and uptake. 

The Safe System approach provides a robust, safety-first framework for developing AV regulations. The Safe 
System approach assumes that mistakes and unexpected driving and operating behaviours are unavoidable 
and ensures that these do not contribute to serious injuries or deaths. The tenets of the Safe System 
approach apply equally to human-based and AI-enabled vehicle operation. Public dialogue on identifying 
acceptable levels of risk in line with the Safe System approach is fundamental. The use of simple 
comparative risk metrics between AVs and human-operated vehicles raises real practical challenges in the 
context of AV certification. Such metrics should be supplemented by a more fine-grained approach that 
compares like-for-like safety performance and addresses changes in the distribution of risks among the 
population. 

AVs perform operating tasks – previously performed by humans – using an AI-based automated driving 
system known as ADS – an AI-based operating system for trains, vessels and aircraft. These AI systems have 
fundamentally different decision-making processes from humans. Therefore, the two separate regulatory 
systems that have been developed for human vehicle operators and human-operated vehicles are not 
adapted to AVs. Consequently, automated vehicles require new institutional and regulatory arrangements 
covering the entirety of the AI-automated operating system. 

The whole AI lifecycle – including the context in which the AVs are operated, the data used for AVs, the AI 
models, outputs and their impact on society – should be taken into account when developing regulations 
for AVs to assure that the AVs are safe, secure and beneficial enough to become part of our transport 
systems. Those regulations must include both technical and non-technical measures. 
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The key factor that will underpin the sustained deployment and broader use of AVs is trust in AVs’ ability 
to be safe, socially acceptable, and beneficial. In addition to technical robustness and safety, privacy 
protection, unbiased and ethical handling of data, fairness, explainability, and transparency are required at 
all stages of the AI lifecycle to make AVs socially beneficial and acceptable. 

To address data-related issues such as potential bias and privacy infringement, regulations are needed to 
verify the lawful and ethical collection and use of data. Also important are the regulatory arrangements 
which allow public authorities or vetted third parties to verify that ethical requirements are satisfied in the 
acquisition and processing of data. Synthetic data can be beneficial to train AI in rare cases where real data 
input is scarce, but it could create new biases if not adequately managed. Principles and guidance on the 
use of synthetic data for the training of AI systems are, therefore, crucial. 

The trustworthiness of data and its validation depend on its fair and accurate selection for the specific AV 
use case. To provide assurance of their safe and predictable performance and robustness, AI systems used 
in AV operations will need to be verified and validated. The functions performed by AI models used for 
vehicle operation include localisation, dynamic scene understanding, path planning, control, and managing 
user interaction. Each of these functions – and overall behaviour – needs to be evaluated using simulation, 
tests in controlled environments, and tests on real traffic situations. While scenario-based tests can provide 
assurance for common scenarios, it may prove more difficult for rare and edge cases because of the scarcity 
of available data. Also, evaluation based on predefined, known scenarios can lead to overfitting by 
manufacturers. Continuous scenario updates and diversification – including by using randomised scenarios 
– are essential.  

AVs are not immune to programming errors or unexpected behaviour. Therefore, processes that address 
this uncertainty are necessary, along with policies to both mitigate AV’s impacts and improve their safety 
performance ex-post. In line with existing approaches in the aviation sector, AV roll-out should include 
formal protocols to ensure lessons are learned and integrated by all actors following safety incidents. Such 
“antifragile” approaches will help to maximise AV system safety despite uncertainty about specific failure 
modes.  

Public authorities’ institutional capacity and regulatory measures should guarantee the transparency of AI 
development and deployment process. They should also guarantee a sufficient level of explainability of AI 
systems – even more so when self-learning AI tools are used. This requires public authority institutions and 
staff to continuously build knowledge and acquire skills. Achieving this in the face of the current 
concentration of skills in the private sector is a challenge. 

The operational environments of AVs play an important role in their safe use. Existing operating 
environments should be improved to make it easier for AVs to function safely, with a lower chance of 
encountering rare but risky cases. Better information exchange between AVs and other road users can help 
avoid potentially dangerous situations. Machine-readable laws and enhancing the ability for vehicles and 
infrastructure to communicate will be beneficial in reducing such risks.  
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What we recommend 

Base AI regulatory and institutional measures on shared fundamental principles 

Fundamental human rights and the values derived from them – like safety, fairness, explainability, and 
human oversight – should form the cornerstone of AV regulation. To improve the safety of AVs and the 
entire transport system, authorities should adopt the Safe System approach. Public authorities must ensure 
all stakeholders understand what constitutes a safe and acceptable level of uncertainty. Moreover, 
authorities must design and implement appropriate regulatory interventions meant to deliver safe 
outcomes. 

Ensure that AI remains explainable, and that training data is collected and handled in a transparent and 
verifiable way  

AI systems should be designed in a way that explains how specific decisions are made based on specific 
inputs. This ensures that identified risks do not resurface. Data is a core element of AI systems. Data 
handling procedures and systems should ensure that AI systems’ training data lends itself to identifying 
biases, quality issues, privacy issues, contamination from adversarial attacks or encoding/human errors  

Mandate reporting of safety-relevant data from automated vehicles 

Incident data is part of the essential “soft” infrastructure that ensures safety. Public authorities should 
mandate the reporting of incident data that is safety-relevant, including when automated vehicle operating 
systems disengage during test operating. Data regarding near misses may also prove relevant. Public 
authorities should establish monitoring, reporting and evaluation processes that improve overall safety 
performance after each incident. Metadata on system capabilities should accompany these reports. All 
these data should be accompanied by aggregate exposure data on distances covered and the environments 
in which the vehicles operated. Transport authorities must also build institutional capacity and technical 
proficiency to enforce regulatory measures. 

Develop and update AV test scenarios and procedures 

Scenario-based tests will play a central role in assessing AVs' abilities in a holistic and safer way. Public 
authorities should establish institutional and regulatory mechanisms to ensure that test scenarios are 
continuously updated and randomised to prevent manufacturers from designing AV performance that only 
meets a limited set of potential scenarios.  

Ensure that physical and digital infrastructures support safe AVs 

Enabling machine-perceivable signage, markings, and other important visual cues in AV operating 
environments enhances safe performance. To further increase the safety of AV operation and AV 
interoperability across multiple regions and contexts, establish machine-readable rules and regulations, 
and a common framework for vehicle-to-vehicle and vehicle-to-infrastructure communications. The 
benefits from these measures extend beyond the realm of AVs to all infrastructure users.
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Enter the machine: Taking the (human) 
driver out of the vehicle 

Technological developments encompassing both vehicles and software have enabled high levels of 
vehicular automation. Across all modes, including road, rail and shipping, highly- and fully-automated 
vehicles (hereafter AVs) that are capable of operating themselves without human intervention within a 
designated operating environment are expected to broadly impact societies (Bahamonde-Birke et al., 
2018).  

AVs are expected to have multiple first-order impacts (i.e. direct effects on transport). AVs are expected by 
many to increase transport safety and improve accessibility (European Commission, 2018; ITF, 2023b). AVs 
are also expected to reduce generalised transport costs due to the replacement of qualified drivers, 
conductors, pilots or captains by AI-enabled technologies. Second-order impacts (i.e. indirect effects on 
transport) include impacts on travel demand, public revenue, and labour, among others (ITF, 2023a, 2023b). 
However, all these expected impacts have yet to materialise as AV deployment currently remains quite low. 
Nonetheless, vigilance is warranted to ensure that AV deployment does not simply replace human error 
with technological failures or flaws.   

For AVs to be widely deployed and used, specific technical and societal challenges must be addressed and 
overcome. A key challenge is to develop the right regulations to ensure the trustworthiness of AVs in the 
sense that they are both safe enough to be operated alongside human-operated vehicles and that their 
use should work for achieving valued societal goals such as improved accessibility, enhanced equity, 
reduced environmental impact, and economic development (ITF, 2023b) 

Automated vehicle deployment levels are not even across modes  

AV deployment has progressed unevenly across roads, railways, and waterways (Fiedler et al., 2019; ITF, 
2023b). Depending on the mode considered, different levels of autonomy - corresponding to different 
capabilities - have been developed (e.g. SAE levels, MASS levels, Grades of Automation for railways) (IEC, 
2014; IMO, 2021; SAE International, 2021a). 

The extent to which a vehicle can be automated will depend on different factors, namely: 

• the type of infrastructure (e.g. road, rail, waterways),  
• the degree of control over the operation environment (i.e. open environment, closed 

environment),  
• and the type of service considered (e.g. passengers or goods).  

For example, technology for automated subway operation is widely available, and automated subway 
project deployment started in the 1960s (ITF, 2023b). However, unlike subways, which are typically 
separated from the surrounding environment by tunnels or barriers, automated road vehicles in cities 
interact with various elements, including pedestrians and generally have a complex and dynamic 
operational domain. For a long time, automated vehicles in cities will have to interact with a broad mix of 
vehicles of various ages running on technologies with differing maturity levels and different levels of 
sophistication. Their deployment is thus much more complicated. Deployment of highly automated 
vehicles in protected contexts (like ports, airports, and rail) poses fewer challenges in comparison to their 
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deployment in complex urban environments. Yet, the use of AVs for mass transport, such as railways and 
ferries, deserves specific consideration as AV-related safety incidents occurring in non-road environments 
may have greater impacts. 

Roundtable participants pointed out several differences between modes. Railways have a simpler 
operation domain, but the potential severity of one major failure (a crash or a derailment) could be far 
greater than that of a road vehicle; thus, the tolerance level for flawed AI performance might be lower than 
for road vehicles. The automation of waterborne vessels faces a different set of challenges. Unlike complex 
road environments, waterborne vessels operate in environments with relatively sparse visual clues outside 
of coastal areas and in a constantly changing medium where waves and wind complicate locational 
precision and motion control.  

Automated road vehicles face the most complicated operational environments and would likely have the 
most substantial societal impacts. While recognising the unique specificities of each transport mode, this 
report focusses mainly on the automation of road vehicles. Nonetheless, some lessons from road AVs will 
be equally applicable to regulations for automated vehicles in other domains. 

 

Box 1. Terminology used in this report 

The roundtable focused on the use of AI for automated vehicles (including rail vehicles and watercraft) that 
can perform dynamic driving tasks (DDT) in designated operational design domains (ODD) without human 
intervention. The level of automation of the vehicles discussed corresponds to levels 4 and 5 of SAE levels 
of road vehicle driving automation (SAE International, 2021a). It also corresponds to the definition of “fully 
automated vehicles” in the (Regulation (EU) 2019/2144). 

A variety of terms have been adopted by different entities, such as ‘autonomous vehicles’ and ‘self-driving 
vehicles,’ and some of them have legal force in specific countries. As outlined in previous ITF work on AVs 
(ITF, 2023b; ITF, 2018), “these terms embody differing views about the role of vehicle connectivity and the 
potential for driving without external assistance”. The SAE International deprecated the use of the term 
‘autonomous’ on the base that the term “obscures the question of whether a so-called “autonomous 
vehicle” depends on communication and/or cooperation with outside entities for important functionality” 
(SAE International, 2021a). In contrast, Regulation (EU) 2019/2144 uses the expression “move 
autonomously” to define the term ‘automated vehicles’, in which ‘autonomous’ means ‘by itself’ rather 
than ‘without communication’. 

In line with these views as expressed in previous ITF reports and to cover the variety of vehicles that may 
be automated beyond those driven on roads, the term ‘automated vehicle’ or ‘AV’ is used to describe the 
vehicles discussed in this report. The noteworthy differences with conventional use are: first, if not stated 
otherwise, the term is used for level 4 and 5 automation, thus excluding the level 3 cases where human-
driver engagement is necessary for certain situations; second, in some context, the term is expanded to 
include rail vehicles and surface ships with the degree of automation that corresponds to level 4 and 5 of 
motor vehicle automation. 
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Safety first, all other utilitarian considerations later 

AV deployment faces important technical and regulatory challenges. Among these challenges, ensuring 
safety is paramount. Automating assembly lines in manufacturing plants and deploying automated buses 
in city centres do not have the same public safety implications. Even though a malfunction of an industrial 
robot could possibly have lethal consequences, the range of potential risks is limited to a confined 
environment and to the people working in it. Malfunctions of AVs operating in public spaces, on the other 
hand, are not only dangerous for people in them but could be dangerous for people outside of the vehicles 
too. For instance, in 2018, an AV in test driving trials collided and killed a pedestrian pushing a bicycle 
across a road (National Transportation Safety Board, 2019). Indeed, the complexity of transport system 
automation stems from the fact that transport has direct and significant implications regarding safety and 
human welfare.  

Safety is the foremost objective for AV deployment, preceding all others. If safety is not guaranteed, it is 
difficult to justify approving the use of AVs, no matter how great their other potential benefits. As the 
German Federal Ministry of Transport and Digital Infrastructure (BMDV, 2017) stated for road vehicle 
automation, the primary purpose of AVs should be “to improve safety of all road users” and “the protection 
of individuals takes precedence over all other utilitarian considerations”. This is true for all AVs: they should 
ensure the safety of all people within the same operating environment -- both inside and outside of the 
vehicle. 

Automation of vehicle operation is one among a wide range of other safety-improving actions and 
interventions. Some of these are well-known (e.g. speed management, separation of traffic participants 
based on speed and weight, addressing maximum vehicle speed or mass and other vehicle design elements, 
driver education, etc…) and may or may not be fully or consistently applied. In many cases their impacts 
and their costs are known and their safety improvement may be more rapid or less costly than those arising 
from large-scale AV deployment. If AVs are the answer to the question “how might safety be improved”, it 
is incumbent upon policymakers to ask whether the deployment of AVs is the first-best, 10th best or only 
50th best answer to that question to guide their pro-safety policies. 

AV certification implies identifying a threshold value for their safety performance, but the answer to the 
question of how safe is ‘safe enough’ is neither straightforward nor settled (ITF, 2018). The first step in 
answering that question is to articulate an overall transport safety strategy. The ‘Safe System’ approach 
provides such a framework and has been adopted by authorities around the world (ITF, 2008, 2016, 2022b). 
This approach is grounded in the realisation and acceptance that, despite all the best efforts to avoid them, 
traffic participants will make mistakes or display unplanned or unforeseen behaviours. A safe system is one 
that is designed so that no one dies or is seriously injured when these mistakes or behaviours occur. A core 
tenet of the Safe System is the reduction of the difference in kinetic energy between traffic participants so 
that collisions, should they occur, have minimal consequences. Safe Systems are designed to minimise the 
mass and speed differentials among traffic participants via speed management or traffic separation. As 
noted in ITF (2018, 2023b) the deployment of AVs implies the following adaptation of the Safe System 
approach, which traditionally focussed on human drivers and traffic participants (ITF, 2023b):  

Automated driving systems (ADS) are not perfect and could perform unexpected and unusual 
manoeuvres that can lead to crashes. The transport system must accommodate ADS's imperfection 
and ensure minimally acceptable levels of safety – e.g. no death or serious injury – even in edge 
and corner cases. 

An additional factor to consider is that one source of AV’s unintended or unexpected behaviours is 
upstream coding errors by humans in the ML or AI model. These types of second-order errors are likely to 
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be found in any software-hardware system but given the reliance of AVs on human-written algorithmic 
code, they are especially relevant to AV safety (ITF, 2019). 

A common threshold used to guide the certification of AVs is achieving equivalent, or better, safety 
performance than a human driver – that is, achieving a net Positive Risk Balance (PRB) for AV driving 
compared to human driving. Often defined at a national scale (e.g. achieving a net reduction in fatalities at 
a national scale), net risk metrics like PRB are intrinsically easy to understand and communicate but are 
complicated and challenging to meaningfully define and use in practice – as in the case of certifying AV 
system performance (Koopman & Widen, 2024). 

A large part of this difficulty resides in the challenge of establishing a relevant and comparable baseline for 
human driving safety performance (Koopman & Widen, 2024). For example, is the performance of the AV 
driving system being compared to that of human-driven vehicles of the same age and equipped with the 
same safety features? Is human driving being compared to AV driving in the same geographic, street 
network, meteorological and other regional contexts? If AV systems display a PRB with respect to human 
drivers, does it do so for all types of human drivers - or are there subgroups of human drivers that display 
a PRB in comparison to AVs – e.g. drivers who drive more safely than AVs? All of these are important 
considerations to consider when exploring the use of net risk metrics like PRB in AV system certification. 

Koopman & Widen (2024) call for practical AV system certification and policy to go beyond the simple use 
of net PRB. They describe risk assessment criteria that are helpful in shaping AV system certification 
processes. These criteria raise three central questions that must be addressed in AV system safety 
performance assessment: 

1. How much safer must AV driving be, and over what time frame? 

Simple approaches to PRB maintain that if the overall driving performance of AVs is as safe as overall human 
driving, then AVs should be allowed to operate. However, other approaches highlight limited public 
acceptance of AV driving performance that is equal to, or only marginally better, than human driving. It is 
unclear what forms a publicly tolerable PRB threshold (equal performance?, 10% better?, 100% better?), 
complicating setting an acceptable PRB criterion for AV system certification. Furthermore, deployment of 
AVs may result in a PRB in favour of human driving over AV driving in the short- to medium-term (e.g. more 
fatal and serious injury crashes occur involving AV systems than human drivers) before shifting in favour of 
AVs in the medium to long-term. This further complicates the establishment of a useful PRB baseline 
(Koopman & Widen, 2024).  

2. How is baseline safety performance established and monitored?  

Establishing a relevant and useable human driving baseline is exceedingly complicated – especially in the 
early to mid-deployment phases of AVs – due to inherent asymmetries in AV versus human driving 
performance. Human driving occurs in a very broad range of environments and contexts, using a very 
disparate fleet of vehicles characterised by a wide range of ages, designs, embarked technologies and 
states of good repair. Human driving involves drivers representing a very wide range of demographics and 
characteristics (age, experience, impairment, threshold for risk acceptance, etc.) as well as an equally broad 
range of crash opponent types and demographics. In comparison, early phases of AV deployment are 
characterised by much more uniform vehicle fleets (age, design, safety technologies, state of repair), in 
much more restricted geographic contexts and less diverse road and street networks and may display 
different crash opponent profiles (Koopman and Widen, 2024).  

An additional complicating factor is that potential misattribution of causality for AV-involved crashes may 
further obfuscate a meaningful safety performance baseline (e.g. legal regimes attributing responsibility to 
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human drivers for rear-end crashes into AVs that have unexpectedly braked may hide the latter as an 
emerging contributory factor to crashes and skew the PRB in favour of AVs) (Koopman & Widen, 2024).  

Finally, comparability of human to AV safety performance is extremely challenging due to the disparity in 
travel volumes of each mode of operation, with the former representing orders of magnitude more 
kilometres driven than the latter. This disparity raises questions and uncertainties regarding the statistical 
significance and comparability of crash rates for AVs with respect to human-driven vehicles. Overall 
accumulated AV driving ranges from one to three million miles driven per AV robotaxi company (Bidarian, 
2023) whereas human driving fatality rates involve orders of magnitude greater travel volumes (e.g. 1 
fatality per 74 million miles driven in the US (NHTSA, 2023a), 1 fatality per 192 million miles driven in the 
UK (UK DfT, 2022). There simply isn’t enough accumulated AV driving to establish straightforward and 
comparable baseline safety performance metrics and closing this gap through different modelling and 
predictive approaches introduces uncertainty as to the “real” fatal crash rate of AVs. For instance, 
unexpected driving performance following a software or hardware update or a change in the driving 
environment may lead to an uptick in clustered ‘common cause’ AV crashes in a pattern unlikely to be 
predicted under the assumption of random independent failures (Koopman & Widen, 2024).  

For these reasons, establishing a relevant measure of PRB in early- to mid-term AV deployment 
incorporating like-for-like comparison of AV to human driving safety performance is extremely challenging 
– certainly with sufficient confidence to meaningfully certify AV system safety. At a minimum, uncertainty 
over the relevant baseline for human safe driving performance would suggest adopting a higher, rather 
than a lower, AV PRB threshold for regulatory, policy and certification purposes.  

3. Do AVs increase risk for some or transfer risk from one group to another? 

Even in instances where the uptake of AVs reduces net fatalities, serious injuries or other harms, some 
populations may see an increase in specific risks or experience a transfer of risk that is socially unacceptable. 
For instance, a scenario where the deployment of AVs leads to a net reduction in deaths and serious injuries 
but where the overwhelming majority of those still killed or seriously injured are children or emergency 
responders would likely face significant resistance. Similarly unacceptable would be a scenario where the 
uptake of AVs leads to the steep reduction of deaths and serious injuries from eliminating risky driving 
behaviours of young men or alcohol- or drug-impaired driving of but leads to an increase in AV crash risk 
for vehicle occupants who, as previously safe drivers, faced very low crash risks. Finally, accepting a higher 
level of risk from AV performance in the short term versus a net reduction of risk in the long term is a form 
of temporal risk transfer from present generations to future generations and may also be challenging to 
manage from the perspective of societal acceptance.  

The danger in using simple net risk indicators, like Positive Risk Balance, is that they only address overall 
risk and do not account for the distribution of those risks or for the transfer of those risks amongst the 
wider population. In its report Ethics of Connected and Automated Vehicles: Recommendations on Road  
Safety, Privacy, Fairness, Explainability and Responsibility (Horizon 2020 Commission Expert Group to 
advise on specific ethical issues raised by driverless mobility (E03659), 2020), the European Commission 
stresses that even if net risk is reduced by AV deployment in comparison to the case without AVs, “no 
category of road user (e.g. pedestrians, cyclists, motorbike users, vehicle passengers) should end up being 
more at risk of harm from [AVs] than they would be against this same benchmark”. It further stresses that 
AV deployments should be designed expressly to avoid creating new inequalities in risk distribution and 
redress existing ones (DG RESEARCH, 2020). 

Whatever the approach adopted for assessing and certifying AV safety performance, it should go beyond 
the use of simple risk balance metrics and incorporate a range of relevant criteria, not just for the vehicle 
itself, but extend to the entire AV system across the entire AV lifecycle. 
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Assessing vehicle safety versus ensuring trust in safe AV system 
performance  

Certifying the safety performance of AI-based AVs is not a straightforward task (ITF, 2018). Current 
regulatory frameworks address vehicle safety characteristics and driver’s skill and aptitude separately. 
These approaches will be challenged by the deployment of AV systems. 

A vehicle operator’s capability is currently certified by a multi-tiered licencing process. The licensing 
process does not guarantee the operator’s safe driving behaviour in a pre-emptive manner but establishes 
a common basis for training and operator testing. It can be divided into three tiers (Cummings, 2019): 
physical tests to check that the operator is physically fit to operate the vehicle, knowledge tests to ensure 
a person’s understanding of operating rules, and practical tests to assess a person’s vehicle operation 
capabilities. Operators’ licenses are issued based on the trust that the licensee is a “safe enough” operator, 
considering the performance the operator has shown during the test process (Cummings, 2019). Because 
operators – drivers in particular -- are also responsible for the consequences of their actions, operators’ 
responsibilities and their liabilities are aligned. In addition, dangerous behaviours are regulated and 
addressed via the enforcement of applicable laws. 

The safe operational capability of AVs must be assessed even more holistically than for non-automated 
vehicles (ITF, 2018). Even though the latter comprise hardware and software systems (e.g. mechanical disc 
brakes and software governing anti-lock braking – ABS -- and electronic stability control - ESC), AI-based 
driving systems are characterised much more inextricably interconnected software and hardware. Existing 
vehicle certification practices are based on national vehicle safety standards for road vehicles, and 
compliance with the standards is either self-certified or established via type-approval processes, depending 
on the countries’ legal systems.  

Current safety assessment systems for transport are designed to accommodate the presence of an 
operator in the vehicle. Certain commercially available vehicles are already equipped with some low-level 
automated functions, such as various advanced driving assistance system (ADAS) features. However, as the 
name suggests, ADAS features are supposed to assist drivers in accomplishing the driving task. ADAS still 
requires drivers to engage in driving tasks throughout the trip, and thus, the driver must remain fully 
responsible for the vehicle’s operation. Further development of AI-based automated driving systems (ADS) 
is expected to widen deployments of AVs that do not require human intervention in performing driving 
tasks. This would ultimately result in the removal of humans from the operator’s seat and require 
fundamental changes in the way safety is assessed.   

Pre-emptively excluding all safety risks is impossible due to the complexity of the road transport 
environment, the degrees of freedom of drivers and others within that environment. In particular, the non-
deterministic nature of ML AI systems means that they may display different behaviours and outcomes 
even if they are presented with the same sensor inputs (Cooper, et al., 2022) (see Box 2 for a more detailed 
description on the development of AI). The combination of these factors makes it even more difficult to 
ensure that AI-based systems will safely or even predictably respond to all the situations they face. Unlike 
the case of human-driven vehicles, occupants of AVs won’t be responsible for the vehicle’s driving 
performance. All these factors highlight the need for adapted and sometimes entirely new regulatory 
approaches to certify the safety of AVs.  
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Box 2. Artificial Intelligence in brief 

Artificial intelligence (AI) is an umbrella term for algorithmic and computer science techniques that allow 
computers to imitate complex human skills (ITF, 2019; Sheikh et al., 2023). The term was coined as early as 
the 1950s.  

The OECD (2019; 2022) defines AI systems as below: 

An AI system is a machine-based system that, for explicit or implicit objectives, infers, from 
the input it receives, how to generate outputs such as predictions, content, 
recommendations, or decisions that can influence physical or virtual environments. 
Different AI systems vary in their levels of autonomy and adaptiveness after deployment. 

The technological development path of AI has not always been smooth. The technology has been 
developed over several “winters” and breakthroughs. Two distinct approaches have emerged from this 
development path: symbolic reasoning and machine learning (ML). Symbolic reasoning is a deterministic 
approach that requires explicit human input of rules, while machine learning algorithms learn rules from 
data (ITF, 2019). While both approaches have their advantages and disadvantages, ML algorithms have 
opened new possibilities for automated driving, which requires real-time decision-making in complex 
environments that more deterministic approaches could not fully cover.  

ML algorithms are distinctly different from conventional algorithms as they learn patterns and correlations 
from data sets and discover rules by themselves according to specified optimisation functions (e.g. 
“maximise time savings”, “minimise algorithmic compute”, “minimize collision risk”). Learning in ML 
systems occurs within the algorithmic system, continuing after the training phase into the use phase (ITF, 
2019). ML algorithms can be divided into three categories: supervised learning, unsupervised learning and 
reinforced learning, depending on their training process, whether they require labelled data or whether a 
reward system is applied. (ITF, 2019, 2021; Sheikh et al., 2023).  

Deep Learning (DL) is a relatively recent subset of ML that uses artificial neural networks. DL has shown to 
perform well on complex tasks such as computer vision and voice recognition. Compared to ‘shallow 
Machine Learning’ techniques, DL can be applied to a wider range of tasks that were previously regarded 
as too complex for machines to perform. There are downsides to DL as it relies on a larger dataset and uses 
more resources, computational power and energy. The operations of DL algorithms are less interpretable 
and explainable than explicit programming or shallow ML techniques (ITF, 2019; Janiesch et al., 2021). 

Figure 1. Machine Learning Concepts and Classes  

 
Source: (Janiesch et al., 2021 adapted from Goodfellow et al., 2016)  
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Generative AI based on large language models (LLMs) or similar content generator AI models are a form of 
AI that generate text, images or other media content based on its training data. Whereas ML AI systems 
use training data and learned behaviours to predict outcomes or actions, generative AI uses training data 
and feedback on previous output to generate human-like text, images and sounds that resemble the 
content on which it has been trained (Sengar, et al., 2024). There are several potential uses for generative 
AI models in automated vehicle design and testing including speeding up and improving ADS ML 
algorithmic coding and generating realistic testing scenarios, even for edge cases (Thomas, 2024). 

What and when to certify? 

A deeply challenging consideration for AVs is what it is exactly that would constitute the object of 
certification (ITF, 2018). Unlike existing cyber-physical vehicular systems, the AI code base in AV systems is 
neither stable nor fixed. AI-based code may reconfigure itself as it applies optimisation functions to the 
data it gathers from its own operation and from its environment. This means that even if it were possible 
to establish a stable code base for an AV at the time of its certification, that code base may substantially 
re-write itself later, invalidating the original certification, which was for a now different vehicle-software 
system.  

Further, the certification of different operating components of the AV cyber-physical system would similarly 
become invalid as the operation of these systems (e.g. automated braking) in conjunction with an evolving 
AI-based code base (e.g. hazard detection) would fall outside of the scope of the original certification 
envelope. Likewise, non-AI software updates or the installation of new hardware components (e.g. a new 
LIDAR sensor or video detection module) would further interact with a very different AI code base than the 
originally certified vehicle, leading potentially to unanticipated and possibly unsafe operation(ITF, 2018). 
The dynamic nature of AI-based code in AV systems highlights the need for a different and adapted 
approach to certifying the safe operation of a broader AV system, and not only the safe operation of a single 
class or model of AV, one at a time. This broader approach must account for the dynamic nature of the AV 
as a regulatory object.  

A broad AV system safety framework must address and account for the role of supportive infrastructure 
(ITF, 2023d) just as it must also account for the actions and responsibilities of key stakeholders (e.g. entities 
responsible for ensuring the safety of the AVs, software developers and AV manufacturers). The safety 
framework must also account for ways in which environmental aspects (e.g. fog, rain, dust, snow, ice, etc…) 
may degrade the safe driving performance of AVs. This broader approach should account for the ways in 
which AVs will influence other agents’ behaviours and how these other agents will influence AVs' 
behaviours in turn. Finally, at its core, the AV system is essentially a cybernetic system, so its safe operation 
relies also on robust and adaptive cybersecurity mechanisms, systems, and protocols. The nature of these 
enters fully within the scope of the regulation of the full AV driving system. 

If the AV system is not fixed in its configuration or performance, how then should regulators certify its safe 
operation? In other words, how can the regulatory framework ensure trustworthy AVs? AVs share some 
safety aspects with conventional vehicles. However, as noted above, new aspects must be considered 
(Galassi & Lagrange, 2020). The assessment of the combined performance of AI-related components is 
currently lacking in the existing vehicle assessment framework. Ensuring trustworthy AVs will require the 
extension of existing certification and validation processes to AI-related elements (e.g. AI systems, machine 
learning, algorithms, etc.) (Baldini, 2020; Fernandez Llorca & Gomez Gutierrez, 2021). Ensuring the 
robustness of AI should also consider specific challenges associated with AI (e.g. cybersecurity, data privacy, 
unbiased treatment of data, etc.).  
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Including AI-specific challenges in AV safety assessment 

The absence of a driver means vehicles will have to perform tasks that were performed by humans until 
then. AVs rely heavily on cyber-physical systems, which combine hardware (e.g. sensors, LIDARs, RADARs, 
microphones, etc.) and software (e.g. artificial intelligence (AI) using machine learning (ML) algorithms to 
replicate human capabilities, namely perception, planning and control. The classic approach to vehicle 
safety assessment is not adapted to the complexity of mixing these components and processes (Fernandez 
Llorca & Gomez Gutierrez, 2021; Galassi & Lagrange, 2020; ITF, 2018; Pater, 2018). 

The use of AI software components in vehicles raises new challenges for driving system assessment (ITF, 
2018; Taeihagh & Lim, 2019). Removing the human in charge and their potential shortcomings and errors 
does not mean the system will be unfailing. On the contrary: as the complexity of AI-related components 
increases, so does the probability of machine errors or unanticipated behaviours (Taeihagh & Lim, 2019). 
Furthermore, the criticality of these risks may depend on the type of vehicle (e.g. car, train, waterborne 
transport) and the Operational Design Domain (ODD) considered (e.g. open or closed environment, the 
complexity of interactions, etc.). 

AV assessment must be adapted to cover these AI-related challenges. AI in vehicles does not form a 
monolithic system (Dede et al., 2021). It is a combination of software components in charge of subtasks of 
driving activity, namely perceiving, planning and controlling the vehicle. AI software embedded in vehicles 
interprets data collected by different types of sensors using different methodologies (Fernandez Llorca & 
Gomez Gutierrez, 2021; ITF, 2018). Thus, new types of risks may arise. For example, risks stemming from 
data collection are very different from those encountered by conventional vehicles. 

Existing certification approaches could be adapted to address some of the new dimensions of AV 
assessment (see Box 3). However, new approaches to assess the potential adverse consequences of AI-
related systems are also needed. Due to the socio-technical nature of AI, challenges are not only technical 
or legal, but they are also social and societal. For instance, one of the potential issues raised in the 
Roundtable was the potential bias in data acquisition. AVs need to have local training data from their ODDs 
to improve their performance. If AV-developing companies test AVs extensively in a certain neighbourhood 
that is cheaper to operate in but not necessarily representative of where the vehicles will be deployed, the 
training data prove biased thus negatively impacting AV driving performance.  
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Box 3. Automation of driving capabilities for road vehicles and the paradigm shift for vehicle assessment 

Assessment and certification approaches for road vehicles typically evolve to address new types of safety 
issues introduced by new vehicle technologies. 

The classic certification approach consists of physical tests to assess that the vehicle reaches a necessary 
safety level before entering a market. These tests are usually performed on a test bench or automotive test 
tracks. This approach aims to ensure the performance of the vehicle's mechanical systems and components 
such as tyres (e.g. resistance, grip on wet surfaces), brakes (e.g. high-speed effectiveness, heat, parking 
brake resistance) and steering equipment, among others. 

With the introduction of computerised components and driving assistance technologies to improve vehicle 
performance (e.g. Electronic Stability Program - ESP, Anti-lock Braking System - ABS, etc.), the classic 
approach of the test bench and the test track alone no longer seems adapted to address safety-relevant 
areas related to the electronic system. Additionally, electronic systems introduced new risks related to their 
potential failures. Thus, simulation tools have been introduced to support the certification of computerised 
components such as ESP (OICA, 2019). 

Figure 2. Multi-phase testing, verification and validation of AVs 

 
Source: (Baldini, 2023; OICA, 2019) 
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Therefore, step-by-step, multi-phase evaluation using simulation, tests in controlled environments, and 
tests on real traffic situations are required to ensure each function and overall capability of AV.  

However, it is important to note that this multi-phase evaluation method is not the whole picture. This is 
limited to a single AV with specific hardware and software. To ensure the safety of AVs in practice, additional 
policy measures that account for trustworthiness at their deployment and operation stages are necessary. 

 

To ensure that AVs are trustworthy, AV system stakeholders (e.g. users, operators, and governments) will 
likely value a multiplicity of criteria that are not just associated with the vehicle's physical safety but also 
its cybersecurity robustness (i.e. the ability of a system to perform its intended functions even under 
adversarial cyber-attack) and the explainability of the AI software, among others.  

Risk-based ADS regulation comprises three components: hazard mapping, risk assessment and risk-based 
oversight and regulation. Hazard mapping should extend across all AI application fields since AI hazards in 
other domains may also be relevant for transport and ADS design and operation. Focus should be given, 
however, to AI hazards resulting from automated vehicle operation. The OECD AI Incidents Monitor is one 
approach that tracks AI hazards across different application domains around the world (OECD, 2024). Risk 
is a function of potential hazards or harms and their probability of occurrence and severity. The final 
component of a risk-based approach comprises establishing progressively more stringent tiers of oversight 
and regulation based on level of risk. Many potential uses of AI in transport pose no or minimal risks, 
whereas other uses may pose significant to intolerable risks. Assessing the probability of significant AI-
induced harms is complicated by lack of sufficient experience and because of the non-deterministic nature 
of ADS AI algorithms. To address this uncertainty, ADS regulation should incorporate a precautionary 
element where potential risks are severe or intolerable. Such a precautionary approach is built into 
different AI risk management approaches (e.g ISO/IEC 23894 and NIST AI 600-1) or regulation (e.g. the EU 
AI Act, 2023). 

A new regulatory framework should include extended assessment criteria covering risks that will be 
amplified by AI use (e.g. cybersecurity, safety, human-machine interaction) and a new set of regulations to 
oversee new risks that are not confined to the vehicles but linked to the management system (e.g. data 
protection, privacy, liability) (Bellet et al., 2019; Matheu-García et al., 2019). The assessment of the impact 
of AI software components is not unique to the transport sector. AI assessments and testing in other sectors 
can inform public authorities since AI in AVs faces challenges like those faced by other sectors (Baldini, 
2020). Additionally, the complexity of AVs, in terms of their diversity (i.e. road vehicles, vessels, rail, etc.) 
and how they are implemented (i.e. open or closed environments), calls for a multidisciplinary approach 
that goes beyond technical considerations. Such an approach could include socio-economic and social 
challenges (Dubljevic et al., 2021). Different types of potential AI-related issues can be distinguished (Dede 
et al., 2021; Dubljevic et al., 2021; Fernandez Llorca & Gomez Gutierrez, 2021; Matheu-García et al., 2019): 

• Technical challenges associated with the nature and capabilities of the technologies used; 
• Societal challenges which describe AI's impacts on socio-economic structures; 
• Societal challenges include the risks of the interaction between automated systems and humans; 
• Data privacy and governance challenges related to how the collected and processed data is used. 

As initiated by several countries such as France, (JO, 2021), Germany (Deutscher Bundestag, 2021), Korea 
(Act No. 16421, 2019) and UK (Automated Vehicles Act, 2024), public authorities would need to adopt an 
adapted and new regulatory framework to ensure the safety and, more broadly speaking, trustworthiness 
of AVs considering these complex issues that are outside of the conventional scope of vehicle safety 
standards and driver licensing systems. New institutional arrangements should also be established to 
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execute the new regulatory measures. These cannot be done solely by the government’s initiative or 
industries’ self-regulation. There should be a common understanding of the key requirements for the 
trustworthiness of AVs and how to satisfy them across all stakeholders, including various levels of 
government, AV developers and operators, infrastructure operators, and other affected sectors of civil 
society.  

Policy Takeaways 

• AVs utilising AI require new institutional and regulatory approaches to ensure their safety and 
trustworthiness, which are different from conventional systems developed for deterministic, 
electro-mechanical safety features. 

• The Safe System approach assumes that mistakes and unexpected driving behaviours will happen 
and ensures that neither contributes to serious injuries or deaths. As such it provides a robust, 
safety-first framework for developing AV regulations. 

• The use of simple risk balance metrics raises real practical challenges in the context of AV 
certification and should be supplemented by a more fine-grained approach seeking to compare 
like-for-like safety performance and addressing changes in the distribution of risks among the 
population. 

• To develop new regulatory frameworks for AVs, policy makers need to make efforts to ensure a 
common understanding of major AI principles and how to apply them to ensure the 
trustworthiness of AVs and AV operating entities.  
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How AI confounds human oversight and how to 
ensure its trustworthiness 

Anatomy of driving: what constitutes driving tasks, and how does AI 
perform them? 

The act of driving involves a continuous flow of perceiving the environment, making decisions, and 
executing motion control (ITF, 2018). According to SAE International, the driving task can be divided into 
strategic functions and dynamic driving tasks (DDT) that should be conducted in real-time (SAE 
International, 2021a). Strategic functions are about deciding the destination and the waypoints to the 
destination and scheduling the trip. DDTs are the tasks usually regarded as driving and are what automated 
vehicles need to perform. The DDT, in turn, can be divided into tactical functions and operational functions 
(See Figure 3). Tactical functions are about identifying objects, events and other factors that are relevant 
to driving the vehicle and planning its movement. This requires detailed functionalities such as perceiving 
the environment, including the vehicle's location (localisation), interpreting the environment, and planning 
the vehicle’s route. Operational functions are controlling the vehicle’s lateral and longitudinal motions to 
execute planned decisions while maintaining stability (Fernández Llorca et al., 2021; ITF, 2018; SAE 
International, 2021a). 

Figure 3. Schematic representation of dynamic driving tasks 

 
Source: ITF elaboration based on (Fernández Llorca et al., 2021; SAE International, 2021a) 
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The development of AI, especially AI techniques based on ML and DL algorithms, opened new possibilities 
for automated vehicles. Similar to humans' ability to learn by doing, AI-based AV systems learn how to drive 
themselves through upstream training and downstream learning by doing. As shown in Figure 3, the AVs 
perform tactical and operational tasks with their Automated Driving Systems (ADS) that employ multiple 
AI techniques. The overall AV driving process is roughly similar to human driving. As with human drivers, 
AVs perceive their environment. AVs first ‘sense’ the surrounding environment with diverse sensors. Then, 
AVs process raw inputs received by sensors to understand the scene and locate themselves within the 
scene. AVs detect and identify the boundaries of roads, lanes, and objects. AVs may also use global 
navigation satellite system (GNSS) signals, high-definition maps (HD maps) and other inputs in this process. 
AVs also predict the movement of vehicles, humans and other objects. Based on this information, AVs plan 
their route in the constructed scene, projecting their anticipated behaviours (e.g., changing a lane) and 
direct motion decisions (e.g., rate of acceleration and speed of travel) (ITF, 2018).  

AVs and human drivers conduct necessary driving functions with varying levels of skill. ITF (2018) 
highlighted that depending on the specific functionality considered, either human drivers or AV systems 
may function better than the other (Table 1). A key finding is that the weakness of AVs in reasoning and 
perception must be addressed by new assessment and validation approaches. An additional factor to 
consider is the accounting for condition-based safety performance: “Where there is conditionality – e.g. 
better driving performance for either humans or automated driving systems is linked to a specific set of 
conditions or contexts -- the Safe System approach implies that the resulting ambiguity does not lead to 
crashes, loss of life or serious injuries. This may entail upstream system versus vehicle design that seeks to 
eliminate these risks”(ITF, 2018). 
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Table 1. Summary of Fitts List of strengths and weaknesses across various aspects of function allocation 
between humans and hardware/software systems 

Aspect Human Hardware/Software system 

Speed Relatively slow Fast 

Power output Relatively weak, variable control High power, smooth and accurate 
control 

Consistency Variable, fatigue plays a role, especially for highly 
repetitive and routine tasks 

Highly consistent and repeatable, 
especially for tasks requiring constant 
vigilance 

Information processing Generally single channel Multichannel, simultaneous operations 

Memory Best for recalling/understanding principles and 
strategies, with flexibility and creativity when needed, 
high long-term memory capacity 

Best for precise, formal information 
recall, and for information requiring 
restricted access, high short-term 
memory capacity, ability to erase 
information after use  

Reasoning Inductive and handles ambiguity well, relatively easy 
to teach, slow but accurate results, with good error 
correction ability 

Deductive and does not handle 
ambiguity well, potentially difficult or 
slow to program, fast and accurate 
results, with poor error correction ability 

Sensing Large, dynamic ranges for each sense, multifunction, 
able to apply judgment, especially to complex or 
ambiguous patterns 

Superior at measuring or quantifying 
signals, poor pattern recognition 
(especially for complex and/or 
ambiguous patterns), able to detect 
stimuli beyond human sensing abilities 
(e.g., infrared) 

Perception Better at handling high variability or alternative 
interpretations, vulnerable to effects of signal noise or 
clutter 

Worse at handling high variability or 
alternative interpretations, vulnerable to 
effects of signal noise or clutter 

Source: ITF, 2018 based on Schoettle (2017) (adapted from Cummings (2014) and de Winter & Dodou (2014)) 

AVs may draw on a range of AI methods and techniques to carry out driving tasks (see Figure 4). While 
these have improved the performance of automated driving significantly, there are still some critical issues 
that must be addressed, especially considering the deployment of fully automated vehicles.  

The first among these is addressing the tension between understanding and explaining how an AI algorithm 
functions and the performance of that algorithm. Trained observers can understand how a typical 
algorithm functions from simply examining its code (interpretability). Based on that understanding, that 
observer can explain the functioning of the algorithm and its outputs (explainability) – including 
highlighting which data inputs or processing functions led to specific outputs. This interpretability and 
explainability comes at a cost when it comes to more and more sophisticated AI algorithms, especially ML 
and DL algorithms – the better these types of algorithms function, the less interpretable and explainable 
they are (ITF, 2019). One of the confounding aspects of AI transparency and explainability is that even 
transparent AI algorithms – e.g. those whose code is revealed to an observer with the technical knowledge 
to understand it – may not necessarily convey to the observer (or even to the algorithm’s designer) 
sufficient information on its functioning to allow for explanation of the algorithmic decisions and outcomes 
(ITF, 2019). Figure 4 shows the inverse relationship between explainability and AI performance. Symbolic 
AI may be explainable, but it does not perform as well as ML or DL algorithms in dealing with big and 
complex data (Symbolic AI may still be useful for certain purposes, such as hard coding the rules that must 
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be observed). ML and DL systems can be used for many functions that require more complex decision-
making, but it is more difficult to understand how and why they produce their outputs.  

Another challenging aspect of regulating AI-based AV systems relates to the data on which the AI is trained 
and that it collects in use. AI systems are trained on data, but it is next to impossible to have an exhaustive 
dataset that includes all possible situations the AV system will face during its operation. Therefore, all 
training data is necessarily a subset of the “real” world that is actively or passively curated and is thus open 
to explicit or implicit biases. Furthermore, there is the risk of cyberattacks that actively alter data inputs to 
interfere with AI’s performance.  

Figure 4. Examples of AI techniques used for automated driving 

 
Source: Ameyugo (2023) 

The complexity and inscrutability of the types of AI algorithms most helpful for automated driving can lead 
to situations where an AV makes an unexpected and harmful decision that any normal human driver would 
not make. In these instances, the reason why the AI made that decision may not be explainable or 
discoverable, the factors and inputs that most influenced that decision may not be apparent, and the biases 
in training data may be hidden. Given these challenges, and from the perspective of AI system regulation 
and certification, it may make sense to adjust how authorities assess AI-based AV systems. Rather than 
focus on transparency, explainability and interpretability as being the keystones of AI assessment processes, 
these and other factors should be included in a broader AI accountability framework (Diakopoulos et al., 
2016; Reisman et al., 2018; World Wide Web Foundation, 2017). A governance framework for AI 
accountability – for trustable AI – should ensure that AI systems are conceived and built so they can be 
trusted to operate as intended and that any harmful outcomes that may occur can be quickly identified 
and rectified (New & Castro, 2018). Moving to a robust trustability and accountability framework for AI-
enabled AVs will be challenging, as discussed further on – but at the outset, public authorities can lay the 
basis for such a framework by establishing comprehensive data reporting requirements and data collection 
efforts regarding safety-relevant AV incidents.  
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Ensuring AI’s trustworthiness: Key elements and AI life cycle 

The fact that AVs’ actions may not be explainable or interpretable and their reliance on training data of 
unknown provenance, coverage, quality or bias raises questions about how much their operation and 
capabilities may be trusted. Given the significance of the transport system from the perspective of safety 
and well-being, these issues must be addressed to ensure AVs can be trusted to operate in alignment with 
broader societal objectives (Knight, 2002). There have been several incidents in which automated driving 
systems have led to serious injuries or deaths (e.g. an AV operating in automated mode with a safety driver 
on board hitting a pedestrian crossing the street with her (NTSB, 2019) or an AV that failed to detect that 
a person had been projected by another car under the vehicle and dragged the person for several meters 
(Quinn Emanuel trial lawyers, 2024).  

The use of AI in support of automated driving calls for more stringent regulations to ensure their 
trustworthiness than for other, non-safety-critical uses of AI, such as customer service chatbots or even 
warehouse-based order-fulfilment robots. Determining how stringent these regulations must be is not a 
straightforward task. There is an inherent uncertainty in AI techniques, and it is impossible to anticipate 
and prevent all potential safety issues in a pre-emptive manner. Thus, crashes, including some that may be 
fatal, could be inevitable – especially in a context not characterised by a strong Safe System safety approach. 
Just as a Safe System approach assumes that humans may make serious and fatal mistakes despite being 
licensed to drive, it seems unreasonable to assume that AV operations would not lead to analogous 
outcomes – all else held equal. Just as with human drivers, avoiding deaths and injuries from AV operation 
requires assessing and acting on the whole of the road traffic system – and not just the driver or ADS. 

Clearly, however, the safety of the ADS matters and must be part of the overall traffic system safety 
assessment. Where the line should be drawn between “trustworthy enough” AVs and untrustworthy AVs 
is thus not just a technical question but a complex question that requires ethical, legal and societal 
considerations. It also extends to the insertion of AVs into a broader road traffic system. In this respect, it 
is essential to consider the principles of trustworthy AI from a broader policy perspective across the entire 
AI lifecycle rather than going deep into the technical details of algorithms used for AVs.  

Several relevant recommendations and principles have already been formulated. The independent high-
level expert group on artificial intelligence set up by the European Commission (EU HLEG) suggested a 
comprehensive framework for trustworthy AI that derived from fundamental rights (High-Level Expert 
Group on Artificial Intelligence, 2019). EU HLEG suggested four ethical principles:  

• respect for human autonomy,  
• prevention of harm,  
• fairness, and  
• explicability.  

Subsequently, the EU HLEG outlined seven requirements to realise these principles: 

• human agency and oversight, 
• technical robustness and safety,  
• privacy and data governance,  
• transparency,  
• diversity, non-discrimination and fairness,  
• environmental and societal well-being, and  
• accountability.   
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More concrete applications of this framework to the AVs were presented at the Roundtable. The European 
Union’s Joint Research Centre developed dedicated assessment criteria for automated vehicles (Fernández 
Llorca et al., 2021). The AI4People-Automotive Committee developed industry recommendations and 
policy recommendations based on the requirements of the trustworthy AI framework (Lütge et al., 2021). 
The European AI Act (Regulation (EU) 2024/1689) that entered into force in August 2024 is the first EU 
regulation implementing these principles. 

The Organisation for Economic Cooperation and Development (OECD) also proposed five principles for 
trustworthy AI that place more of an explicit emphasis of sustainability in comparison to the EU HLEG 
framework (OECD, 2019): 

• inclusive and sustainable growth and well-being,  
• human-centred values and fairness,  
• transparency and explainability,  
• robustness and safety, and  
• accountability.  

There are also national-level research initiatives and industry standards on the trustworthiness of AI. 
Confiance.ai has classified the key attributes of trustworthy AI systems into four different broad areas (IEEE 
Computer Society, 2022):  

• system governance,  
• technical design and operation,  
• interactions with humans and other systems, 
• and ethical perspectives. 

The Institute of Electrical and Electronics Engineers (IEEE) standard model process for addressing ethical 
concerns during system design (IEEE 7000-2021, 2021) provides an informative annex on control over AI 
systems that addresses four aspects of building trustworthy AI: 

• control over data quality, 
• how training data is found and selected,  
• the design of AI algorithms, and  
• the evolution of the AI system’s logic and transparency.  

The IEEE standard also lists important ethical values to guide system design.  

Taken together, the literature suggests that AI systems should be designed with the ethical values of human 
autonomy, safety, and fairness at their core and requiring, among other things: 

• adequate human oversight, 
• transparency, accountability and explainability, 
• safety and technical robustness, and 
• privacy and proper data governance.  
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Many of the points raised by the Roundtable participants resonated with the principles and key elements 
suggested in the above recommendations. For instance, some participants highlighted the importance of 
considering equity and fairness issues linked to AV testing and data acquisition (e.g. are AVs being tested 
in areas that are not representative of the conditions found in other socio-economic contexts?). 
Participants also raised the point that, as currently being planned and deployed, AV technology essentially 
serves wealthy people who can afford it but does little to address the most common transport challenges 
faced by the broader population. Others, still, underscored that the current conceptualisation of AVs largely 
favoured a car-based, rather than a public transport-based, vision of urban transport. Another related point 
was the need to ensure technical robustness and fail-safe design for travel modes carrying large numbers 
of passengers – like the railways or urban rail systems.  

Building trust by ensuring improved performance by design 

ITF noted that transport systems can be designed to accommodate failures and unanticipated operations 
in three different ways – they can be robust, resilient or regenerative (Figure 5). Robust systems are 
designed to be highly resistant to failure – an approach that works well when much is known and can be 
predicted about failure modes. However, when system tolerances are exceeded, robust systems can fail 
rapidly and spectacularly and are expensive to bring back online.  

Figure 5. System stress response scenarios 

 
Source: ITF 

Another approach is to design systems to be resilient – that is, they “bounce back” to an acceptable 
operating condition once a failure or breakdown has occurred. Resilient approaches are suited to contexts 
characterised by greater uncertainty over failure modes and, in this respect, seem better aligned for AV 
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system design. However, “bouncing back” to a condition that allowed a crash to occur seems neither 
helpful nor desirable.  

Regenerative or “antifragile” systems are those that change when stressed or after a failure to resume 
operation in a better position than when they failed (Jones, 2014; Taleb, 2012). Roundtable participants 
stressed that such regenerative or “antifragile” system design seems best suited for the safe deployment 
of AVs. The aviation safety framework already adopts such an approach through comprehensive post-crash 
investigative and recommendation protocols that ensures that the entire air navigation system operates 
more safely after every failure. This is due to the long-term development of a system where safety 
information can be widely shared and regulatory bodies and operators can collaboratively review safety 
enhancement measures. For AVs, a similar system could be established to ensure safety through active 
information sharing and the development of a comprehensive scenario pool for hazardous situations.  

Many participants noted that some principles outlined above implied ethical dilemmas and trade-offs. This 
is in line with the findings and recommendations of the European High-Level Expert Group on Artificial 
Intelligence (2019), which put forward recommendations that built the foundation of the later AI Act 
(Regulation (EU) 2024/1689). For instance, AV deployment may imply trade-offs between human 
autonomy and prevention of harm if AI limits or prevents certain driver behaviours to ensure safety. 
Participants further noted that some of the principles discussed above justify more stringent certification 
and regulatory approaches for AVs compared to human driving. AVs would turn human drivers into 
passengers, thus reducing their autonomy over driving decisions. This could be justified only with enhanced 
safety. However, what safety thresholds matter and how much autonomy people could and should 
surrender in exchange for increased safety is a matter of more societal debate and policy decisions. Also, 
it should be noted that some core values of fundamental rights are absolute and should not be 
compromised (High-Level Expert Group on Artificial Intelligence, 2019).  

Lifecycle of AI 

Designing trustworthy AI relies on a thorough understanding of the AI lifecycle. Different policy 
interventions are needed for the different phases of the lifecycle. The lifecycle of AI systems can be broadly 
divided into the development, validation, deployment, and operation phases (OECD, 2019). These 
processes are not one-time events. They are constantly reiterated with new updates and with the constant 
migration from older to newer systems and technologies. The AI lifecycle also must integrate how AI models 
integrate feedback, learning and retraining during the course of their operation. The AI lifecycle does not 
just concern the technical aspects of AI systems, but their interactions with their environment, humans 
and institutions as well. 
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Figure 6. The Five Dimensions of the AI System Lifecycle 

 
Source: ITF based on NIST (2023)  

The OECD outlines five key dimensions of the AI lifecycle: People & Planet, Economic Context, Data & Input, 
AI Model, and Task and Output (OECD, 2022). The US National Institute of Standards and Technology (NIST) 
has developed an AI risk management framework using the OECD lifecycle model, in which they modified 
the economic context to the application context and highlighted the importance of Test, Evaluation, 
Verification and Validation (TEVV) processes throughout the entire AI lifecycle (NIST, 2023). This report 
adopts the NIST-OECD modified lifecycle illustrated in Figure 6 when discussing AI regulatory measures.  

The characteristics of each dimension imply different regulatory approaches and interventions for AI-
enabled AVs. The people and planet dimension includes diverse stakeholders such as drivers, vehicle 
operators, passengers and, more broadly, people within the AV operation areas and society at large. This 
dimension affects all other dimensions, from how data is collected, how models are tested, how AVs are 
deployed, and how they are monitored. Within this dimension, a few broader factors influence the uptake 
of AVs, including their public acceptance, their impact on social welfare outcomes and fundamental human 
rights, their contribution to the overall well-being of society and their impact on environmental 
sustainability.  

The Application Context dimension is more AI technology specific. Elements of AV deployment that fall into 
this dimension include the safety performance of AVs, AV’s interaction with its operational environment 
and the ensuring the quality of fleet vehicles and fleet management by appropriate entities like the 
Authorised Self-Driving Entities (ASDE) proposed in the UK and Australia (ITF, 2023b; Law Commission of 
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England and Wales & Scottish Law Commission., 2022; NTC, 2024). Supporting physical and digital 
infrastructure could facilitate the deployment and use of AVs (ITF, 2023d). For instance, better lane 
markings would help AVs better position themselves in the roadway. Digital infrastructure, such as high-
definition digital maps or connectivity would also enhance the ability for AV’s self-localise themselves in 
their environment and interact with other road users. Finally, the deployment of AVs onto public rights-of-
way will influence the actions and behaviours of other occupants of those spaces and thus alter the AI 
application context itself.  

The Data & Input dimension covers the collection, validation and cleaning of data used to train AI models. 
This extends to the collection of metadata and archiving information about the data that may enable AI 
data audits with respect to bias, legal and ethical issues and fitness-for-purpose. Fairness in the 
representation of diverse social groups and other potential biases, privacy protection, and whether and to 
which degree synthetic data could be used to train AI models are issues that fall in this dimension and 
require policy intervention (OECD, 2022).  

The AI Model dimension can be divided into two sub-dimensions, ‘Build and Use Model’ and ‘Verify and 
Validate’ (OECD, 2022). The former refers to the creation or selection of AI techniques and algorithms and 
their training, whereas the latter concerns how to verify, validate, calibrate and interpret the output of the 
AI model. Regulators may require a certain level of algorithmic explainability for verification, which could 
have a trade-off with AI model performance (ITF, 2018). They may also want to ensure that AI models do 
not propagate biases originating from their training or in-use data. For instance, an AI model could falsely 
correlate a certain visual attribute, such as skin tone, with a different level of risk or could be trained on 
data that excludes certain meteorological conditions or phenomena. Actors in this dimension should work 
to prevent such cases.  

The Task & Output dimension is where AI-enabled AVs are released and their performance monitored. This 
dimension covers piloting new AV deployment, ensuring compatibility with legacy systems and regulatory 
compliance, managing institutional and organisational changes and evaluating and learning from user 
experience (NIST, 2023). AV safety and regulatory compliance as a product is checked in this dimension, 
and it is in this dimension that final certification for AVs will be conducted. After this dimension, the full 
circle is made by progressing into the application context dimension, where certified entities like the 
proposed UK and Australian ASDEs will monitor and ensure safety performance. 

NIST proposed the TEVV processes as that addresses AI risk management strategies and actions throughout 
the AI lifecycle. TEVV tasks help highlight technical, societal, legal and ethical issues across all the other 
dimensions and help in the assessment and tracking of new and unanticipated risks. Throughout the AI 
lifecycle, TEVV processes help adjust AI development mid-course and enhance ex-post risk management 
(NIST, 2023).  

Policy Takeaways 

• As AVs are meant to serve people and society, their regulation and deployment must be considered 
in connection with fundamental human rights, prioritising values such as safety, fairness, 
explainability, and human oversight. 

• These value-based requirements should be satisfied across all dimensions of the AI lifecycle. 
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Regulatory considerations to ensure trustworthy 
AI in each dimension of the AI lifecycle 

So far, this report has examined how ensuring the trustworthiness of AI-enabled AV is different from doing 
so for traditional vehicles, explored the principles and requirements for trustworthy AI, and described the 
different dimensions of the AI lifecycle. In this section, it will explore the policy and regulatory measures 
available to governments to enable the wider uptake and safe use of AI-enabled AVs. Key issues and 
recommendations are presented for each dimension of the AI lifecycle. 

What Data is Required for Automated Vehicles? 

A significant amount of data is required to train AI systems used in AVs just as the use of AVs generates a 
large amount of data that is then used to enhance AV operation. Before planning and executing decisions 
regarding the vehicle’s motion and speed, AI systems must ingest data to perceive and make sense of their 
environment. This data pertains to the immediate area around the vehicle, the localisation of the vehicle, 
various infrastructure characteristics and helps predict the future state of the vehicle’s operating context. 
This data helps inform vehicle self-localisation, respond to both static and dynamic rules such as road /rail 
signs and signal phases, and incorporate weather conditions and the movements of surrounding vehicles 
into their driving decisions. Additionally, the AI system must recognise other road users, such as pedestrians 
and cyclists, as well as hazards such as animals, vegetation and foreign objects and predict their actions 
and trajectories to adjust driving behaviour accordingly. To perform these tasks safely, AI requires extensive 
training using large datasets. 

In the operational environment, the vehicle constructs a local dynamic map (LDM) to perceive the 
surrounding environment and situate itself within it (See Figure 7). LDMs are comprised of four layers of 
data according to spatial and temporal characteristics (ITF, 2023b; Shimada et al., 2015). Type 1 data 
includes permanent and static data such as terrain and road infrastructure. Type 2 data consists of transient 
but static data like traffic signs. Type 3 data consists of transient and dynamic elements such as traffic 
congestion and signal phases. Type 4 data includes highly dynamic elements such as other vehicles and 
pedestrians.  
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Figure 7. The four types of data in a local dynamic map 

 
Source: (ITF, 2023b; Shimada et al., 2015) 

These data are acquired and incorporated into the LDM through various methods. For static data, dedicated 
data acquisition vehicles are often used to build accurate data of ODD in advance. In some countries, high-
definition 3D maps (HD maps) have been compiled by national authorities and have been included in 
national infrastructure systems alongside road or rail networks (ITF, 2023d). Dynamic data, on the other 
hand, can be obtained through the AV's own sensors or via vehicle-to-infrastructure (V2I) communication 
for Type 3 data, such as signal phases. Of course, it is also possible to pursue acquiring all static and dynamic 
information required for driving solely through sensors on the vehicles. AVs, or other sensor equipped 
vehicles, can also capture data which is then used to update LDMs for all vehicles. This requires vehicle-to-
cloud communication capabilities, on- and off-vehicle data processing and validation and implies some 
form of standard metadata to enable data users to audit the data for operational or forensic outcomes. 

Data can be classified according to the purposes for which they are collected. Depending on these purposes, 
different kinds of data are sourced and collected, and different management measures are applied to that 
data. AV-based AI training data concerns heterogenous and large datasets collected by a wide range of 
actors and stakeholders, characterised by variable metadata and of sometimes unknown quality or 
provenance. The operation of AVs generates large datasets with known technical characteristics and quality 
for the entities operating or manufacturing the vehicles but that are rarely available to others. Public 
authorities need to access data or trusted information regarding AV operations to carry out their regulatory 
functions. These functions include permitting, licensing, certification, crash investigation, auditing safety 
performance or market power, etc. To carry out their regulatory functions, public authorities will need to 
have access to metadata – data describing the data -- addressing its provenance and other related 
information such as indications of data quality, formats and chronology. While private companies collect 
data from Avs to improve their performance and service delivery, public authorities require more aggregate 
data to oversee AV system operations and guide interventions, if necessary, according to the mandates 
they have. Public authorities can also help establish reference scenarios and define minimum ODDs to 
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guide AV system certification – this will require cooperation and some data sharing between the 
government and AV developers and operators.  

Minimising biases to ensure robustness and fairness 

Diverse actors collect and process various kinds of data for their own purposes, and this poses several 
challenges to ensuring trustworthy AI. During the roundtable discussion, biases, data sharing, and the use 
of synthetic data were more extensively discussed. In addition, privacy is also an essential element that 
must be taken into consideration when developing trustworthy AI.  

Data biases or the collection of inaccurate data can violate the requirements of trustworthy AI with respect 
to robustness and fairness. For example, regarding robustness, an AI trained on data gathered from a 
certain specific traffic environment (e.g. simplified road network, low-density urban area, dry and warm 
climate) may face challenges in reliably operating an AV in different environments (e.g. highly complex 
network topology, high-density urban area, extreme precipitation and freezing conditions). An AI trained 
and operating in the favourable climate of the western United States, where it hardly rains at all, may need 
additional validation to ensure that it will perform well in snowy conditions or heavy rains. It is also 
uncertain if AVs trained on U.S. highways will drive as safely in countries with different driving cultures and 
infrastructure quality, such as India. Therefore, thorough verification and validation is necessary to ensure 
that AI is adequately trained for various traffic situations within the application ODDs. 

AV system designers may have recourse to synthetic data to address the issue of data representativity by 
augmenting real data with synthetic data to better capture a wide range of operating contexts. By 
combining synthetic data on weather conditions, sunlight variations, and shadows into existing datasets, 
AI can be trained to enhance the safety of AV operations. However, there may still be discrepancies 
between synthetic data used for training and real-world situations, necessitating rigorous validation during 
AV performance verification stages.  

For fairness, measures are needed to address the potential violation of non-discrimination and fairness 
requirements for trustworthy AI, especially when AVs interact with pedestrians and other road users. For 
example, a recent study compared eight state-of-the-art machine learning AI-based pedestrian detectors 
used to evaluate AV scene detection skills (the performance of various pedestrian detection). The study 
found that the undetected proportion of children was 20% higher than for adults on average across a range 
of scenarios and under certain scenarios (e.g. day vs night, high contrast lighting vs low contrast lighting), 
the undetected proportion of people with dark skin was between 4% to 8% higher than for people with 
lighter skin tones (Li et al., 2024). 

Discrepancies in detection accuracy may be due to the AI’s skill in handling different scenarios or may be 
linked to biases in the training data – or both. AV developers must be mindful of data and algorithmic biases 
and ensure that these are addressed throughout the AI lifecycle via TEVV actions. Public authorities must 
also be mindful of these biases and establish audit and other mechanisms to verify that such discriminatory 
outcomes do not occur in the operation of AVs. 

It is difficult to create a uniform or quantitative standard for fairness, and the weight of various 
considerations, such as gender, race, and disparities between the rich and poor, may vary across and within 
different national and regional contexts. In this regard, mitigation measures are difficult to devise through 
solely technical methods alone and may require social consensus and social considerations. Non-
quantitative methods, such as analysing the communities within the ODD (IEEE 7000-2021) or having 
diverse teams, can be helpful in uncovering potential discriminatory factors. As a preliminary step to these 
measures, AV developers should be encouraged to maintain metadata about the data on which their AVs 
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are trained. (Gebru et al., 2021) provide some insights into building data for these datasets by providing 
guidance on developing datasheets for datasets. 

Data sharing and data reporting to support AV development and Evaluation 

Another issue in the data and inputs dimension is how data is shared among operators or reported to public 
authorities. Governments may be able to encourage more data sharing through their policies. Data is a 
non-rivalrous good in the sense that data does not diminish in quantity when someone uses it as the same 
data can be used by others regardless of whether it is already used. Therefore, there is room for 
governments to increase overall social welfare by expanding their supply (Alemanno, 2018), in particular 
by incentivising or requiring data owners to share data amongst themselves. 

As this report focuses on the regulatory aspects of verification and certification of AI for AVs, the discussion 
below focuses on data reporting from the private sector to public authorities rather than on enabling data 
sharing between private companies. Data reporting – especially when it is mandated by public authorities 
– must be limited in scope and linked to specific public policy mandates. This means that a number of 
issues must be addressed, including data reporting initiatives. However, there are still a number of issues 
that must be addressed, such as establishing for what purposes data must be reported, what data should 
be reported to achieve those purposes, what incentives may facilitate data reporting, and how to verify 
data trustworthiness and accuracy.  

The flow of data between the private sector and authorities can go in two directions: the private sector 
reporting data to public authorities and public authorities making data available to the private sector. For 
example, public authorities can provide data pertaining to levels 1, 2, and 3 of LDMs (Figure 7). Type 4 data 
is more complicated to provide because it is information about various situations encountered by AVs while 
they are driving and, therefore, not largely available to public authorities. Providing information on road 
design and various road signs via HD 3D maps augments data collected from the AV’s onboard sensors and 
can reduce the probability of AVs misinterpreting their environment. Similarly, vehicle-to-everything (V2X) 
communication can provide information on transient events such as temporary lane closures due to road 
works, firefighter or police activities, and traffic signal phases, which can make AVs much more reliable 
than if they were operating solely relying on their sensors. These datasets can be provided by public 
authorities (ITF, 2023d) or in collaboration with private companies. 

More importantly, governments may help provide a range of representative or safety-critical testing 
scenarios to verify and certify the safety of AVs. In order to accumulate a pool of scenarios, authorities 
require information on the different situations that occur in private AV operations. This could be achieved 
by collecting cases through standardised ex-post investigation protocols and reports regarding AV crashes 
and near-crash incidents. The NHTSA standing general order is a good example of such data reporting 
practices being implemented(NHTSA, 2023b). These can inform the creation of generalised testing 
scenarios that can be distributed to all AV stakeholders. 

There are potential obstacles to establishing data sharing and reporting mechanisms. A significant share of 
AV-relevant data is produced and collected either by dominant firms wanting to protect their market 
position or by start-ups not wanting to divulge sensitive data granting them a competitive edge. In both 
cases, there is little natural incentive for either type of actor to share data with competitors or provide it 
to public authorities. In addition, data sharing among competitors may be subject to legal restrictions 
related to trade secrets – though this is less of a concern for data reporting to public authorities. Finally, 
there may be data quality and liability issues when utilising data built by others, not to mention 
compatibility issues from different formats and semantics.  
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However, it is worth considering the establishment of a mechanism for the mutual sharing of LIDAR point 
cloud data required for constructing LDM types 1 and 2. This mechanism could enhance LDM accuracy 
with respect to different ODDs faced by AVs. The data collected represent a proxy of the physical 
environment which is observable to all. As such, it represents a type of raw data on which valuable 
inference and knowledge is built. ITF and others have noted a justification for sharing observed data (as 
opposed to data built on, or inferred from, observed data) since competition on the basis of data analytics 
as opposed to data collection creates larger innovation benefits and diminishes market concentration 
effects stemming from dominant actors ability to collect more observed data than their rivals (ITF, 2023c; 
Krämer et al., 2020).  

Developing a sharing platform with an incentive mechanism is another method worth considering. The 
Safety Pool scenario database (https://www.safetypool.ai/) in the UK has garnered 250,000 scenarios and 
set up a credit-based sharing system in which the participants would earn credits by submitting scenarios 
and then use them to get access to the pooled scenarios. The credit will be given based on the uniqueness 
and validity of their contributions.  

Privacy issues 

Lastly, there should be appropriate measures to safeguard privacy. Some data AVs collect and use can be 
particularly sensitive, especially geolocated or biometric data that can be used to identify individuals or 
infer personal characteristics regarding individuals (Lütge et al., 2021). In particular, data relating to people 
outside the vehicle or the licence plates of nearby vehicles should be handled with care, including via 
robust de-identification techniques (ITF, 2019, 2022a), as there is no way to gain consent from data subjects 
regarding for this data collection. The interactions privacy-enhancing measures and AV performance are 
not always straightforward. A roundtable participant noted that AI performance exhibited bias defects 
when using data where the faces of pedestrians and the licence plates of surrounding vehicles were 
removed due to the difference between this data and both training data and ground truth data. Another 
participant expressed concern about the possibility that debiasing attempts could lead to more indirect 
biases. One potential solution is to adopt robust but critical feature-preserving individual de-identification 
to scenes presented to AVs in operation. Such approaches retain the key characteristics for AV object 
recognition but replace the individual identifying information with similar random information (Fernández 
Llorca et al., 2021). 

Development to Deployment: Verifying AI Models 

An AV is composed of various hardware and software elements that are integrated into one cyber-physical 
system. Just as vehicles are comprised of various mechanical sub-systems handling different tasks, AVs use 
different AI models for tasks such as perception, planning, and control, as well as for managing various 
sensors and other components. As noted earlier, the certification of AI systems cannot be done by testing 
each element and aggregating the results; a comprehensive assessment of driving capability is necessary. 
There are several issues to consider regarding the assessment of AV system performance:  

• How well will AVs drive in typical situations? (General performance) 

• How well will AVs be able to handle situations for which they have not been trained? (Robustness) 

• How well will the autonomous vehicle be able to perform fallback manoeuvres in situations where 
it is unable to operate normally? (Resilience) 

https://www.safetypool.ai/
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• In the event of an accident or abnormal behaviour, will it be possible to identify the cause and 
make improvements? (Explainability - Regenerativity) 

These issues have not formed part of the traditional vehicle certification and homologation processes as 
vehicles have not, up until now, operated themselves. All that was required was the verification and 
certification of various mechanical properties and the test performance of vehicles. Even ADAS functions, 
as they are performed under the supervision and responsibility of human drivers, are not required to be 
tested for their ability to function without human input and oversight. For instance, Lane Keeping Assist 
Systems (LKAS) enable the vehicle to steer itself to follow lane markings but LKAS is not supposed to make 
lane changes based on the vehicle’s own judgment of the traffic situation around it. 

A comprehensive evaluation of driving capabilities requires a different kind of verification compared to the 
traditional vehicle safety compliance procedures. To achieve this, an understanding the characteristics of 
the driving behaviour currently performed by humans and the procedures used to assess driving skills of 
human drivers can provide valuable insights. 

Driving involves a range of cognitive abilities, from simple repetitive tasks to high-level decision-making in 
complex situations. Driving behaviours can be categorized into four types using the Skill-Rule-Knowledge-
Expert (SRKE) taxonomy (see Figure 8) based on the degree of uncertainty and the reasoning approach 
utilized (M. L. Cummings, 2021). 

Figure 8. Skill-Rule-Knowledge-Expert (SRKE) Taxonomy  

 
Source: M. L. Cummings (2021) 
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Responding to the lowest level of uncertainty falls within the Skill domain. This corresponds to actions such 
as smoothly adjusting lateral movement to follow a lane. A sufficiently trained driver can steer along a lane 
without conscious thought, and these low-uncertainty actions are also relatively easy to implement in 
software. 

Next is Rule-based behaviour, such as stopping when seeing a Stop sign, which involves understanding 
traffic rules and acting accordingly. This area can also be sufficiently implemented with rule-based AI, 
suppose there are no uncertainties involved in recognising the signage. The following level involves actions 
like accurately recognising a partially occluded stop sign. This requires inference that goes beyond using 
past experience to deduce the unseen parts. Current ML technologies can cope with such situations to 
some extent through training on various scenes, but their robustness needs to be verified, especially in 
cases where an explicit effort is made to confound AI-based perception and interpretation by altering 
information present in a scene to induce an unexpected or dangerous interpretation – i.e. via an 
“adversarial attack” (see Figure 9). 

Lastly, there is the 'expert' domain that requires accumulated knowledge. This involves comprehensive 
recognition and inference for situations that go beyond the scope of received information and existing 
training data. AVs might not behave like experienced humans when facing complex and unexpected 
situations such as emergency roadworks, police and firefighter operations, or diplomatic convoys. This 
expert domain may be an area that is difficult to address solely through the acquisition of operational data 
and training. This is because it requires not just sensing and perceiving complex surroundings and situations 
but also the context for what is happening and why. In these instances, incongruous contextual information 
parsed by AV sensors should trigger precautionary and “fail-safe” operational states (e.g. disappearance of 
road-markings should trigger safe deceleration and pulling off to a safe stopping point to allow an 
assessment of the situation and potential operating risks). machine-readable  

From the perspective of facilitating AV operations, it's necessary to use various AI techniques, from 
Symbolic AI to ML, to address Skill, Rule, and Knowledge while minimising situations that require Expert-
level intervention. Situations requiring Expert judgment are those where even regular drivers can't rely on 
automatic recall but need to carefully examine the situation to make decisions. To minimise such situations, 
we can consider improving traffic environments and providing additional contextual information through 
V2X and other means. For example, if a fire truck transmits its operational status via a V2X beacon, the 
situation can turn from an expert level to a rule level with lower uncertainty. We will discuss this aspect in 
more detail later. 



REGULATORY CONSIDERATIONS TO ENSURE TRUSTWORTHY AI IN EACH DIMENSION OF THE AI LIFECYCLE 

33 AI, MACHINE LEARNING AND REGULATION: THE CASE OF AUTOMATED VEHICLES © OECD/ITF 2025 

Figure 9. Machine learning image recognition vulnerabilities to adversarial attacks 

 
Sources: (ITF, 2019), based on (Eykholt et al., 2018; Gu et al., 2017; Song, 2018) 

To contrast with AV system testing and certification, it's helpful to understand human drivers are tested 
and certified regarding driving abilities requiring various levels of reasoning. While there may be slight 
differences between countries and regions, most nations conduct a physical readiness assessment, a 
written knowledge exam, and a practical examination in an actual vehicle before granting a driver's license 
(M. L. Cummings, 2019). 

The Physical readiness assessment measures determine whether vision and physical abilities are sufficient 
for driving. For AVs, this is analogous to verifying that various sensors meet specified hardware 
requirements and performance standards. Subsequently, a written test confirms understanding of traffic 
rules and road signs and correct driving practices in various situations. This part can be compared to 
algorithm simulation tests and test driving in a controlled environment. Simulation tests can verify 
understanding of key rules, while test driving in a controlled environment can recreate common, 
representative scenarios or frequent dangerous situations to verify appropriate responses. The practical 
examination for human driver's licenses corresponds to driving tests in public environments. For AVs, it's 
particularly important to verify their ability to operate well in situations where they coexist with other 
vehicles and road users. Figure 10 shows these different characteristics of evaluation environments. 

Additionally, various measures applied to human drivers can be similarly adapted for AVs. Just as human 
drivers undergo periodic physical assessments and license renewals, AVs should also be subject to regular 
recertification to address issues like the degradation of sensors over time. This should be done at 
appropriate intervals. Furthermore, just as there are different types of licenses for different vehicle 
categories, AVs might need to undergo recertification when their hardware or software components 
change significantly beyond a certain threshold. 

Furthermore, conditional certification like young driver or “learner's” permits implemented in some 
countries could be envisaged for AVs. This could involve having a human supervisor on board for specific 
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A. Back-door triggered 
misclassification
Stop sign classified as “Speed Limit”

A machine learning model was trained to 
correctly and reliably identify a stop sign with 
a very high degree of confidence except when 
in the presence of a very specific “trigger” – in 
this case, a yellow post-it placed on the stop 
sign. In the presence of the trigger, the ML 
model identifies the stop sign as a speed limit 
sign

B. Robust Physical Perturbation
Stop sign classified as “Speed Limit 
45mph”

A stop sign was physically modified with a few 
black and white stickers according to a 
computed pattern resulting in the consistent 
mis-classified of the sign as a speed limit sign.

C. Noise-perturbed image classification
Green light classified as “Red”

An image of a green traffic light was modified with a 
minimal but targeted amount of noise so that it was 
consistently classified as a red traffic light
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Operational Design Domains (ODDs) until sufficient confidence in the AV's safety is established. During this 
process, it would be possible to identify situations within the ODD that require Expert-level reasoning 
according to the SKYE model and work on minimising these situations. 

Figure 10. Test, Evaluation, Verification and Validation (TEVV) Environments 

 
Source: Khastgir (2023) 

When performing scenario-based tests for safety verification and certification, caution must be exercised 
regarding test-optimisation designs. If a vetting authority presents specific scenarios for verification and 
validation, manufacturers might optimise performance solely for these scenarios, potentially resulting in 
significantly reduced safety in different situations. Diversified and randomly selected test scenarios, 
combined with a performance outcome-based approach, can assess overall safety rather than focusing on 
delivering safe performance in just a few specific scenarios. Verification and certification require sufficiently 
extensive driving in public environments to confirm AV capabilities to respond to situations beyond test 
scenarios. Furthermore, a reporting system should be in place during the deployment stage to ensure 
appropriate reporting of abnormalities when they occur during deployment. 

Regarding responses to abnormal or dangerous situations during the operation stage, it is necessary to 
consider adopting explainable AI principles from the outset of the AV development stage. Black box AI ML 
models are comprised of numerous hidden processing layers and randomly generated weighted 
parameters which confound explainability and complicate interpretability (e.g. the ability to determine how 
much each input influenced a particular output). Even if this is known, the relationship only explains what 
elements were significant in an AI-based decision, not why or to what extent they influenced the decision. 
Figure 9 shows that almost the same part of the image was highly correlated to the two entirely different 
conclusions. This demonstrates that interpretability alone is insufficient to explain AI's decisions. Non-
explainability and low interpretability have implications with respect to legal matters regarding product 
liability and criminal or civil responsibility. Current liability and legal regimes are ill-suited for AI-based 
vehicle operation. This is a shortcoming that will have to be addressed from a systematic perspective before 
large-scale AV deployment can occur. 
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Figure 11. An example of AI making different decision based on the similar data interpretations 

 
Source: Rudin (2019), photo credit: Chaofen Chen, Duke University 

At the roundtable, it was noted that explainability and accuracy do not necessarily have a trade-off 
relationship in AI models. The discussion highlighted the need to guide the industry towards developing 
and implementing explainable models suitable for AVs rather than attempting to make existing black box 
models explainable (Figure 12). Developing models for interpretability and explainability from the outset is 
an example of “public stack architecture” – e.g. designing digital and data architectures from the ground 
up to ensure that public values are incorporated by design into those systems (ITF, 2022a; van der Waal et 
al., 2020). Such explainable and interpretable by design (EIBD) models would enhance safety as they would 
allow post-crash forensic investigations to discover, document and distribute data on safety critical AI 
functioning and parameters but this approach may also expose key intellectual property of AI developers. 
This suggests a role for either an independent regulator or third-party actors that could manage 
investigations without revealing any more data than is necessary to ensure safe AV operation. 

Figure 12. Explainability and interpretability by design for machine learning applications 

 
Source: ITF (2019) adapted from Gunning (2017) 
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Ensuring Fault-Resistant Safety  

Upstream prevention of unsafe AV driving outcomes via training, verification, and AV system certification 
are all important, but even a fully vetted and legally certified AV may encounter unforeseen circumstances 
or make unexpected decisions while operating. Accommodating these outcomes while protecting 
passengers and others around the vehicle is a key tenet of the Safe System applied to AVs (ITF, 2018, 2023b). 
Knowing that such unforeseen driving behaviours may be minimised but not fully prevented highlights the 
importance of addressing AV fault tolerance modes and their implications.  

The link between safety and fault tolerance modes and safety strategies for AVs is not as direct as for non-
AV vehicles. This is because the AV can display risky or dangerous behaviours even while operating exactly 
as it was designed to – i.e. with no technical “errors” or “faults”. Thus, potential “faults” for AVs concern 
traditional technical faults (e.g. a loss of LIDAR signal, a compromised hydraulic braking line, a short-
circuited microchip, a loss of steering control due to a failed bolt, etc.) and human coding errors, as well as 
any condition resulting from a deviation from safe expected driving behaviour (e.g. a well-functioning AV 
turning into a bicycle lane). Four fault tolerance regimes come into play in these circumstances: fail-unsafe, 
fail-safe, fail-operational and fail-degraded (Figure 13). 

The minimal operating configuration of AVs should avoid all fail-unsafe outcomes by design – that is, a 
system that cannot recover safe operation in the event of a technical fault or a deviation from safe 
behaviour. In the presence of such a scenario – especially in the case of an AV functioning according to its 
design but displaying unsafe behaviour – a case could be made for incorporating a passenger-operated 
“kill-switch” that automatically cuts off all automated driving features. However, such an approach is itself 
fraught with risk since doing so may not eliminate the source of danger if the activation of the switch leads 
to immobilisation of the vehicle (e.g. the vehicle could still be in harm’s way).  

Figure 13. Fault tolerance modes for AVs 

 
Source: ITF, adapted from (Stolte et al., 2021)  
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Another inherent risk in such sudden machine-to-human transfers of control stems from degraded 
situational awareness and delayed reaction times. These risks are already present for ADAS-equipped 
vehicles. Level 3 automation, while technically intermediate between Level 2 (ADAS under human driver’s 
supervision) and Level 4 (Entirely driven by ADS in the designated ODD) is a particularly sensitive mode of 
operation that entails significant transfer-of-control risks. In instances where the AI system transfers control, 
passengers may be unable to seamlessly assume driving responsibilities due to situational “fog” or a poor 
understanding of what has triggered the handover. For Level 3 ADAS, where vehicle control is entrusted to 
the system in normal situations, passengers are likely to be more inattentive, resulting in a significant 
cognitive burden when required to take over the control and handle complex situations that were already 
challenging to the AI. Therefore, from a safety perspective, this approach carries higher risks than other 
levels. Even if drivers are ready to take over control of the vehicle, their reaction times may be insufficient 
to counter the danger. Roundtable participants stressed that even for Level 2 automation, which assumes 
active monitoring of the path ahead of the vehicle, crashes and near misses occur frequently due to 
delayed driver reaction times. If control transfer is necessary, consideration should be given to allowing 
ample preparatory time or permitting transfers only after minimal safety manoeuvres are safely performed. 

In a failure-tolerant system design, part of the normal operation of the vehicle is to default to a fail-safe 
mode when a fault is encountered or unsafe behaviour occurs. This requires the system to be designed to 
recognise faulty or risky operation and then, if the desired functionality of the system or vehicle is no longer 
being delivered, transition to a condition ensuring the safety of passengers and those around the vehicle. 
Fail-safe modes can also be triggered by the passenger (i.e. a “kill” switch) which initiates the automatic 
transition into a fail-safe situation. Unlike the “kill switch” in the fail-unsafe scenario described above, a 
coupled kill switch and fail-safe system initiate safety actions such as activating hazard lights, reducing 
speed, navigating to a safe place to stop if the function supports the manoeuvre, coming to a stop and 
communicating with a control centre or emergency responders, as required for level 3 vehicles in Korea 
(MOLIT Ordinance No. 684) or request for level 3 Automated Lane Keeping System (ALKS) by UN Regulation 
(UN Regulation No.157).  These actions comprise the Minimum Risk Manoeuvres (MRM) that ensure fail-
safe operation.  If a crash is imminent, the AV needs to engage in Emergency Manoeuvres (EM), such as 
stronger deacceleration, to avoid or mitigate a collision (UN Regulation No.157). 

A technical fault may not trigger a fail-safe mode if the system is still delivering the desired functionality. 
This may occur if, for instance, a primary microprocessor fails, but a secondary one takes over control. In 
these circumstances, the AV can continue to operate within its design ODD in a fail-operational mode if 
nominal safety performance is met or surpassed. Finally, a fault may allow expected functionality but 
performance that is below nominal performance thresholds. This could be the case if one long-range 
forward-facing sensor fails, reducing the ability of the AV to properly sense its environment at high speeds. 
The fault would trigger a lower maximum speed while still allowing the vehicle to function in a fail-degraded 
mode. 

Fail-safe, fail-operational and fail-degraded modes, as well as MRM frameworks and operational 
parameters, should be addressed in AV system certification and testing.  
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Box 4. Either you drive, or I drive: Skipping level 3 in regulation 

During the roundtable, a somewhat radical but thought-provoking argument was raised. The argument is 
that not legally allowing Level 3 driving automation, which involves transferring control to the human driver 
while operating within the ODD (Operational Design Domain), will be advantageous regarding traffic safety. 
In this case, the responsibility will be either fully burdened by a human driver or by the ADS-driven vehicle 
while the vehicle is in the ODD. 

Currently, Level 2 automation requires the driver to constantly monitor the driving processes regardless of 
whether the ADAS function is activated. In contrast, Level 4 allows passengers to be completely disengaged 
while the vehicle is within the ODD. Level 3 is an intermediate stage where a human driver doesn't need 
to pay constant attention but is required to be ready to take control when requested by the vehicle.  

While these stages may seem logically incremental from a technical perspective, Level 3 poses many risks 
from a human driver's standpoint. It is questionable whether a driver who has been disengaged can 
suddenly assess the situation more accurately than the AV and make the right decisions when requested 
to take control. This process might not reduce risks but merely transfer them to human drivers. If the 
human driver is unprepared, the risk could even increase. Although regulations could require the vehicle 
to perform an MRM (Minimum Risk Manoeuvre) if the driver doesn't respond, this could lead to complex 
legal disputes about driving responsibility in case of crashes, potentially disadvantaging human drivers due 
to information asymmetry between them and manufacturers. 

Therefore, from a policy perspective, requiring manufacturers to guarantee their vehicles can take full 
responsibility for driving within the ODD without control transfers might be more straightforward and safer. 
The handover of control would only be allowed when a human driver wants to take control. Currently, the 
regulatory development direction is focused on advancing levels for individual functions such as ALKS 
(Automated Lane Keeping System). However, this alternative approach also seems worthy of serious 
consideration. 

Co-evolving with AVs: From AV deployment to making AVs work for 
better transport  

Many policy-relevant issues remain to be tackled even after AVs are starting to be deployed through well-
designed procedures. Rather, at this stage, AVs begin to interact with other vehicles and entities present 
in their environment and within society. In addition to monitoring the AV operations, public authorities 
will need to pursue enhancing their trustworthiness. This requires not only the technological improvement 
of AV technologies as a result of operational experience but also to build capacity among  relevant public 
and private entities and to improve the general public’s understanding of AVs. This implies continued policy 
interventions to facilitate a smoother introduction and acceptance of AVs as part of the transport system.  

Accounting for experience-based learning 

Human drivers possess the capability for top-down reasoning, allowing them to perceive situations based 
on their experience and expectations. As human vehicle operators gain experience, they become safer 
up to the point where, potentially, age begins to inhibit their abilities to operate vehicles safely. AI 
models do not transform experience into safe behaviour in the same manner as humans. This 
complicates efforts to guarantee safety through a single validation process under the expectation that 
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AV safety performance will improve over time. Consequently, a more comprehensive system is necessary 
to ensure safety and reliability throughout the entire lifecycle of AI. The entire system must not only be 
consistently safe, but it must improve its safety performance over time and in response to incidents – it 
must be regenerative by design and antifragile in nature. 

Enhancing the Skills of Stakeholders 

Building an antifragile system requires a high level of technical understanding not only from AV 
manufacturers but also from safety regulatory agencies. This will require upskilling and skills onboarding 
on the part of relevant institutions. While third-party verification by experts can be used, regulatory 
bodies themselves must possess a certain level of technological literacy regarding AI and AV systems. 
Public authority capacity-building measures are needed, and the introduction of certification fees to 
secure funding for this purpose may be worth considering.  

Machine-readable regulation 

Consideration should also be given to machine-readable laws and standards. Existing rules are conceived 
of and written solely for human use and interpretation – this complicates their use by automated 
systems like AVs. AVs require rules and regulations to be transcribed and adapted in code and for 
machine implementation. However, such machine-readable rules may be less flexible in responding to 
varying traffic situations. Therefore, it appears necessary to clearly lay out essential rules and address 
particularly ambiguous rules while allowing room for AI to learn and adapt flexibly to traffic situations 
when necessary. 

Social Acceptability 

Large-scale uptake of AVs will happen only if a societal consensus forms regarding their safety, 
trustworthiness and contribution to society. Achieving this consensus will require heightened and 
focused public participation to gather and act on the views of residents and stakeholders within the 
Operational Design Domain (ODD). As demonstrated by the case in San Francisco, where Cruise vehicles 
were stopped by people putting rubber cones on them, operations can be difficult without securing 
acceptance. Sufficient regulatory and institutional interventions will be necessary to address concerns 
regarding fairness, privacy, human oversight, and cybersecurity in AV implementation. 
 
Furthermore, a gradual approach may be needed when selecting ODDs for fleet-based AV services. In 
areas where regular public transport operations are complicated to deliver, the introduction of AV-based 
mobility services could be welcomed as a good option to enhance mobility for residents who cannot or 
do not use cars. Consideration could be given to introducing AV-based services to complement public 
services, addressing previously unmet accessibility and mobility needs. 
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Policy Takeaways 

• To ensure the safe operation of AVs, both spatial data and verification scenario data are required. 
The government should design policies to ensure that this data is not discriminatorily biased 
towards specific groups, that privacy is protected, and that the data is sufficiently shared for 
societal benefits. 

• The AI used in AVs must have its driving ability and safety features verified under various conditions, 
including simulations, controlled environments, and public road tests.  

• Explainable AI should be utilised to the maximum extent possible to verify the causal relationships 
of driving decisions made in uncertain and risky situations. 

• Nevertheless, it is impossible to completely eliminate situations where AVs encounter 
uncertainties and make risky decisions that lead to crashes. The government must work towards 
establishing an antifragile operational management framework that can extract valuable insights 
from these incidents and leverage them to continually enhance the overall system's safety and 
reliability.  

• Fail-safe, fail-operational and fail-degraded modes, as well as MRM frameworks and operational 
parameters, should be addressed in AV system certification and testing. 

• The AV regulatory framework does not end with vehicle validation; it must also ensure that safety 
is continuously enhanced during the operational phase and through the AI lifecycle. This includes 
improving the operation environment with V2X connectivity and machine-readable regulations, 
enhancing the skills of stakeholders and improving social acceptance 

 



 

41 AI, MACHINE LEARNING AND REGULATION: THE CASE OF AUTOMATED VEHICLES © OECD/ITF 2025 

References 

Act No. 16421, (2019), Act on the Promotion of and Support for Commercialization of Autonomous 

Vehicles [in Korean: 자율주행자동차 상용화 촉진 및 지원에 관한 법률]. 
https://elaw.klri.re.kr/eng_mobile/viewer.do?hseq=57571&type=part&key=41 (accessed December 16, 
2024). 

Alemanno, A. (2018), “Big Data for Good: Unlocking Privately-Held Data to the Benefit of the Many”, 
European Journal of Risk Regulation, 9(2), 183–191, https://doi.org/10.1017/ERR.2018.34  

Ameyugo, G. (2023), “AI application in Transport: Understanding and evaluating AI systems in critical 
applications”, Presentation made to the ITF Roundtable on Artificial Intelligence, Machine Learning and 
Regulation January 26, 2024, https://www.itf-oecd.org/sites/default/files/repositories/session_1_-
_gregorio_ameyugo.pdf 

Automated Vehicles Act (2024), United Kingdom Automated Vehicles Act 2024, 
https://www.legislation.gov.uk/ukpga/2024/10/contents (accessed December 16, 2024). 

Bahamonde-Birke, F. J., Kickhöfer, B., Heinrichs, D., & Kuhnimhof, T. (2018), “A Systemic View on 
Autonomous Vehicles: Policy Aspects for a Sustainable Transportation Planning”, disP – the Planning 
Review, 54(3), 12–25, https://doi.org/10.1080/02513625.2018.1525197. 

Baldini, G. (2020), “Testing and certification of automated vehicles including cybersecurity and artificial 
intelligence aspects”, In Joint Research Committee (Issue EUR 30472 EN), Publications Office of the 
European Union, https://doi.org/10.2760/86907.  

Baldini, G. (2023), “Testing, verification & validation of AI-based transport systems”, Presentation made to 
the ITF Roundtable on Artificial Intelligence, Machine Learning and Regulation January 26, 2024, 
https://www.itf-oecd.org/sites/default/files/repositories/session_3_-_gianmarco_baldini.pdf 

Bellet, T., Cunneen, M., Mullins, M., Murphy, F., Pütz, F., Spickermann, F., Braendle, C., & Baumann, M. F. 
(2019), “From semi to fully autonomous vehicles: New emerging risks and ethico-legal challenges for 
human-machine interactions”, Transportation Research Part F: Traffic Psychology and Behaviour, 63, 153–
164, https://doi.org/10.1016/J.TRF.2019.04.004.  

Bidarian, N. (2023, August 11), Regulators give green light to driverless taxis in San Francisco | CNN 
Business [Broadcast], CNN, https://edition.cnn.com/2023/08/11/tech/robotaxi-vote-san-
francisco/index.html (accessed December 16, 2024). 

BMDV, (2017), Ethics Commission Automated and Connected Driving, German Federal Ministry of 
Transport and Digital Infrastructure, https://bmdv.bund.de/SharedDocs/EN/publications/report-ethics-
commission.pdf?__blob=publicationFile (accessed December 16, 2024). 

A. Feder Cooper, Jonathan Frankle, and Christopher De Sa, 2022, “Non-Determinism and the Lawlessness 
of Machine Learning Code”, In Proceedings of the 2022 Symposium on Computer Science and Law 
(CSLAW ’22), November 1–2, 2022, Washington, DC, USA, ACM, New York, NY, USA, 9 pages, 
https://doi.org/10.1145/3511265.3550446.  

Cummings, M. L. (2019), “Adaptation of Human Licensing Examinations to the Certification of 
Autonomous Systems”, In H. Yu, X. Li, R. M. Murray, S. Ramesh, & C. J. Tomlin (Eds.), Safe, Autonomous 

https://elaw.klri.re.kr/eng_mobile/viewer.do?hseq=57571&type=part&key=41
https://doi.org/10.1017/ERR.2018.34
https://www.itf-oecd.org/sites/default/files/repositories/session_1_-_gregorio_ameyugo.pdf
https://www.itf-oecd.org/sites/default/files/repositories/session_1_-_gregorio_ameyugo.pdf
https://www.legislation.gov.uk/ukpga/2024/10/contents
https://doi.org/10.1080/02513625.2018.1525197
https://doi.org/10.2760/86907
https://www.itf-oecd.org/sites/default/files/repositories/session_3_-_gianmarco_baldini.pdf
https://doi.org/10.1016/J.TRF.2019.04.004
https://edition.cnn.com/2023/08/11/tech/robotaxi-vote-san-francisco/index.html
https://edition.cnn.com/2023/08/11/tech/robotaxi-vote-san-francisco/index.html
https://bmdv.bund.de/SharedDocs/EN/publications/report-ethics-commission.pdf?__blob=publicationFile
https://bmdv.bund.de/SharedDocs/EN/publications/report-ethics-commission.pdf?__blob=publicationFile
https://doi.org/10.1145/3511265.3550446


REFERENCES 

AI, MACHINE LEARNING AND REGULATION: THE CASE OF AUTOMATED VEHICLES © OECD/ITF 2025 42 

and Intelligent Vehicles (pp. 145–162), Springer, http://www.springer.com/series/15608 (accessed 
December 16, 2024). 

Cummings, M. L. (2021), “Rethinking the Maturity of Artificial Intelligence in Safety-Critical Settings”, AI 
Magazine, 42(1), https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/7394 (accessed 
December 16, 2024). 

Cummings, M. L. (2014), “Man versus Machine or Man + Machine?”, IEEE Intelligent Systems, 29(5), 62–
69, https://doi.org/10.1109/MIS.2014.87.  

de Winter, J. C. F., & Dodou, D. (2014), “Why the Fitts list has persisted throughout the history of function 
allocation”, Cognition, Technology and Work, 16(1), 1–11, https://doi.org/10.1007/S10111-011-0188-1 
(accessed December 16, 2024). 

Dede, G., Naydenov, R., Malatras, A., & Sanchez, I. (2021), Cybersecurity challenges in the uptake of 
artificial intelligence in autonomous driving, https://doi.org/10.2760/551271.  

Diakopoulos, N., Friedler, S., Arenas, M., Barocas, S., Hay, M., Howe, B., Jagadish, Unsworth, K., Sahuguet, 
Venkatasubramanian, S., Wilson, C., Yu, C., & Zevenbergen, B. (2016), Principles for Accountable 
Algorithms and a Social Impact Statement for Algorithms, https://www.fatml.org/resources/principles-
for-accountable-algorithms (accessed December 16, 2024). 

Dubljevic, V., List, G., Milojevich, J., Ajmeri, N., Bauer, W. A., Singh, M. P., Bardaka, E., Birkland, T. A., 
Edwards, C. H. W., Mayer, R. C., Muntean, I., Powers, T. M., Rakha, H. A., Ricks, V. A., & Samandar, M. S. 
(2021), “Toward a rational and ethical sociotechnical system of autonomous vehicles: A novel application 
of multi-criteria decision analysis”, PLoS ONE, 16(8), https://doi.org/10.1371/JOURNAL.PONE.0256224.  

Deutscher Bundestag (2021), “Entwurf Eines Gesetzes Zur Änderung Des Straßenverkehrsgesetzes Und 
Des Pflichtversicherungsgesetzes–Gesetz Zum Autonomen Fahren”, Circular 19/27439, 
https://dserver.bundestag.de/btd/19/274/1927439.pdf (accessed December 16, 2024). 

European Commission, (2018), “On the road to automated mobility: An EU strategy for mobility of the 
future.” COM(2018) 283 Final, https://eur-lex.europa.eu/legal-
content/EN/TXT/?uri=CELEX%3A52018DC0283 (accessed December 16, 2024). 

Eykholt, K., Evtimov, I., Fernandes, E., Li, B., Rahmati, A., Xiao, C., Prakash, A., Kohno, T., & Song, D. (2018), 
“Robust Physical-World Attacks on Deep Learning Visual Classification”, Proceedings of the IEEE Computer 
Society Conference on Computer Vision and Pattern Recognition, 1625–1634, 
https://doi.org/10.1109/CVPR.2018.00175.  

Fernandez Llorca, D., & Gomez Gutierrez, E. (2021), Trustworthy Autonomous Vehicles, Publications Office 
of the European Union, EUR 30942 EN, https://doi.org/10.2760/120385. 

Fernández Llorca, David and Gómez, Emilia (2021), Trustworthy Autonomous Vehicles: Assessment criteria 
for trustworthy AI in the autonomous driving domain, Publications Office of the European Union, 
https://publications.jrc.ec.europa.eu/repository/handle/JRC127051 (accsessed December 16, 2024). 

Galassi, M. C., & Lagrange, A. (2020), New approaches for automated vehicles certification, Part I, Current 
and upcoming methods for safety assessment, https://op.europa.eu/en/publication-detail/-
/publication/d320cd56-8051-11ea-b94a-01aa75ed71a1/language-en (accessed December 16, 2024). 

Gebru, T., Morgenstern, J., Vecchione, B., Vaughan, J. W., Wallach, H., Iii, H. D., & Crawford, K. (2021), 
“Datasheets for datasets”, In Communications of the ACM (Vol. 64, Issue 12, pp. 86–92), Association for 
Computing Machinery, https://doi.org/10.1145/3458723.  

http://www.springer.com/series/15608
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/7394
https://doi.org/10.1109/MIS.2014.87
https://doi.org/10.1007/S10111-011-0188-1
https://doi.org/10.2760/551271
https://www.fatml.org/resources/principles-for-accountable-algorithms
https://www.fatml.org/resources/principles-for-accountable-algorithms
https://doi.org/10.1371/JOURNAL.PONE.0256224
https://dserver.bundestag.de/btd/19/274/1927439.pdf
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52018DC0283
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52018DC0283
https://doi.org/10.1109/CVPR.2018.00175
https://doi.org/10.2760/120385
https://publications.jrc.ec.europa.eu/repository/handle/JRC127051
https://op.europa.eu/en/publication-detail/-/publication/d320cd56-8051-11ea-b94a-01aa75ed71a1/language-en
https://op.europa.eu/en/publication-detail/-/publication/d320cd56-8051-11ea-b94a-01aa75ed71a1/language-en
https://doi.org/10.1145/3458723


REFERENCES 

43 AI, MACHINE LEARNING AND REGULATION: THE CASE OF AUTOMATED VEHICLES © OECD/ITF 2025 

Gu, T., Dolan-Gavitt, B., & Garg, S. (2017), BadNets: Identifying Vulnerabilities in the Machine Learning 
Model Supply Chain, https://doi.org/10.48550/arXiv.1708.06733.  

Gunning, D. (2017), Explainable Artificial Intelligence (XAI), 
https://asd.gsfc.nasa.gov/conferences/ai/program/003-XAIforNASA.pdf (accessed December 16, 2024). 

High-Level Expert Group on Artificial Intelligence, (2019), Ethics Guidelines for Trustworthy AI, European 
Commission, https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai (accessed 
December 16, 2024). 

DG RESEARCH (2020), “Ethics of Connected and Automated Vehicles: recommendations on road safety, 
privacy, fairness, explainability and responsibility”, Horizon 2020 Commission Expert Group to advise on 
specific ethical issues raised by driverless mobility (E03659), https://doi.org/10.2777/966923 (accessed 
December 16, 2024). 

IEC, (2014, July 10), “Railway applications - Urban guided transport management and command/control 
systems - Part 1: System principles and fundamental concepts”, International Electrotechnical 
Commission, https://webstore.iec.ch/publication/6777 (accessed December 16, 2024). 

IEEE 7000-2021, (2021), IEEE Standard Model Process for Addressing Ethical Concerns during System 
Design, https://ieeexplore.ieee.org/document/9536679 (accessed December 16, 2024). 

IEEE Computer Society (2022), Towards the engineering of trustworthy AI applications for critical systems, 
https://www.confiance.ai/wp-content/uploads/2023/09/LivreBlanc-Confiance.ai-Octobre2022-1.pdf 
(accessed December 16, 2024). 

IMO, (2021), Outcome of the Regulatory Scoping Exercise for the Use of Maritime Autonomous Surface 
Ships (MASS), MSC.1/Circ.1638, 
https://wwwcdn.imo.org/localresources/en/MediaCentre/PressBriefings/Documents/MSC.1-
Circ.1638%20-%20Outcome%20Of%20The%20Regulatory%20Scoping%20ExerciseFor%20The%20Use%2
0Of%20Maritime%20Autonomous%20Surface%20Ships...%20(Secretariat).pdf (accessed December 16, 
2024). 

ITF, (2008), Towards Zero: Ambitious Road Safety Targets and the Safe System Approach, OECD Publishing, 
Paris, https://www.itf-oecd.org/towards-zero (accessed December 16, 2024). 

ITF, (2016), Zero road deaths and serious injuries : leading a paradigm shift to a safe system, OECD 
Publishing, Paris, https://www.oecd.org/en/publications/2016/10/zero-road-deaths-and-serious-
injuries_g1g6e7c8.html (accessed December 16, 2024). 

ITF. (2018), Safer Roads with Automated Vehicles?, International Transport Forum, OECD Publishing, Paris, 
https://www.itf-oecd.org/safer-roads-automated-vehicles-0 (accessed December 16, 2024). 

ITF, (2019), Governing Transport in the Algorithmic Age, International Transport Forum, OECD Publishing, 
Paris, https://www.itf-oecd.org/governing-transport-algorithmic-age (accessed December 16, 2024). 

ITF, (2021), Artificial Intelligence in Proactive Road Infrastructure Safety Management, International 
Transport Forum, OECD Publishing, Paris, https://www.itf-oecd.org/artificial-intelligence-proactive-road-
infrastructure-safety-management (accessed December 16, 2024). 

ITF, (2022a), Reporting Mobility Data: Good Governance Principles and Practices, International Transport 
Forum, OECD Publishing, Paris, https://www.itf-oecd.org/reporting-mobility-data-governance-principles-
practices (accessed December 16, 2024). 

https://doi.org/10.48550/arXiv.1708.06733
https://asd.gsfc.nasa.gov/conferences/ai/program/003-XAIforNASA.pdf
https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai
https://doi.org/10.2777/966923
https://webstore.iec.ch/publication/6777
https://ieeexplore.ieee.org/document/9536679
https://www.confiance.ai/wp-content/uploads/2023/09/LivreBlanc-Confiance.ai-Octobre2022-1.pdf
https://wwwcdn.imo.org/localresources/en/MediaCentre/PressBriefings/Documents/MSC.1-Circ.1638%20-%20Outcome%20Of%20The%20Regulatory%20Scoping%20ExerciseFor%20The%20Use%20Of%20Maritime%20Autonomous%20Surface%20Ships...%20(Secretariat).pdf
https://wwwcdn.imo.org/localresources/en/MediaCentre/PressBriefings/Documents/MSC.1-Circ.1638%20-%20Outcome%20Of%20The%20Regulatory%20Scoping%20ExerciseFor%20The%20Use%20Of%20Maritime%20Autonomous%20Surface%20Ships...%20(Secretariat).pdf
https://wwwcdn.imo.org/localresources/en/MediaCentre/PressBriefings/Documents/MSC.1-Circ.1638%20-%20Outcome%20Of%20The%20Regulatory%20Scoping%20ExerciseFor%20The%20Use%20Of%20Maritime%20Autonomous%20Surface%20Ships...%20(Secretariat).pdf
https://www.itf-oecd.org/towards-zero
https://www.oecd.org/en/publications/2016/10/zero-road-deaths-and-serious-injuries_g1g6e7c8.html
https://www.oecd.org/en/publications/2016/10/zero-road-deaths-and-serious-injuries_g1g6e7c8.html
https://www.itf-oecd.org/safer-roads-automated-vehicles-0
https://www.itf-oecd.org/governing-transport-algorithmic-age
https://www.itf-oecd.org/artificial-intelligence-proactive-road-infrastructure-safety-management
https://www.itf-oecd.org/artificial-intelligence-proactive-road-infrastructure-safety-management
https://www.itf-oecd.org/reporting-mobility-data-governance-principles-practices
https://www.itf-oecd.org/reporting-mobility-data-governance-principles-practices


REFERENCES 

AI, MACHINE LEARNING AND REGULATION: THE CASE OF AUTOMATED VEHICLES © OECD/ITF 2025 44 

ITF, (2022b), The Safe System Approach in Action, International Transport Forum, OECD Publishing, Paris, 
https://www.itf-oecd.org/safe-system-approach-action-experience-based-guide-enhanced-road-safety 
(accessed December 16, 2024). 

ITF, (2023a), Adapting (to) Automation: Transport Workforce in Transition, International Transport Forum, 
OECD Publishing, Paris, https://www.itf-oecd.org/adapting-automation-transport-workforce-transition 
(accessed December16, 2024). 

ITF, (2023b), Making Automated Vehicles Work for Better Transport Services: Regulating for Impact, 
International Transport Forum, OECD Publishing, Paris, https://www.itf-oecd.org/automated-vehicles-
better-transport-services (accessed December16, 2024). 

ITF, (2023c), Mix and MaaS: Data Architecture for Mobility as a Service, International Transport Forum, 
OECD Publishing, Paris, https://www.itf-oecd.org/mix-and-maas-data-architecture-mobility-service 
(accessed December 16, 2024). 

ITF, (2023d), Preparing Infrastructure for Automated Vehicles, International Transport Forum, OECD 
Publishing, Paris, https://www.itf-oecd.org/preparing-infrastructure-automated-vehicles (accessed 
December 16, 2024). 

Janiesch, C., Zschech, P., & Heinrich, K, (2021), “Machine learning and deep learning”, Electronic Markets, 
31, 685–695, https://doi.org/10.48550/arXiv.2104.05314.  

Jones, K. H. (2014), “Engineering Antifragile Systems: A Change In Design Philosophy”, Procedia Computer 
Science, 32, 870–875, https://doi.org/10.1016/J.PROCS.2014.05.504.  

Khastgir, S. (2023), “Cross-Domain Safety Assurance Framework for Autonomous Transport Systems 
(Land, air and marine)”, Presentation made to the ITF Roundtable on Artificial Intelligence, Machine 
Learning and Regulation January 26, 2024, https://www.itf-
oecd.org/sites/default/files/repositories/session_1_-_siddartha_khastgir.pdf 

Knight, J. C. (2002), “Safety critical systems: challenges and directions”, Proceedings of the 24th 
International Conference on Software Engineering, 547–550, 
https://ieeexplore.ieee.org/document/1007998 (accessed December 16, 2024). 

Koopman, P., & Widen, W. H. (2024), Breaking the Tyranny of Net Risk Metrics for Automated Vehicle 
Safety, https://scsc.uk/journal/index.php/scsj/article/view/31 (accessed December 16, 2024). 

Krämer, J., Senellart, P., & de Streel, A. (2020), Making data portability more effective for the digital 
economy, https://cerre.eu/publications/report-making-data-portability-more-effective-digital-economy/ 
(accessed December 16, 2024). 

Laplante, P., Milojicic, D., Serebryakov, S., & Bennett, D. (2020), “Artificial Intelligence and Critical Systems: 
From Hype to Reality”, Computer, 53(11), 45–52, https://doi.org/10.1109/MC.2020.3006177.  

Law Commission of England and Wales, & Scottish Law Commission, (2022), Automated Vehicles : joint 
report, https://lawcom.gov.uk/project/automated-vehicles/ (accessed December 16, 2024). 

Li, X., Chen, Z., Zhang, J. M., Sarro, F., Zhang, Y., & Liu, X. (2024), “Bias Behind the Wheel: Fairness Analysis 
of Autonomous Driving Systems”, Transactions on Software Engineering and Methodology (TOSEM), 1, 1, 
1, 22, https://doi.org/10.48550/arXiv.2308.02935.  

Lütge, C., Poszler, F., Acosta, A. J., Danks, D., Gottehrer, G., Mihet-Popa, L., & Naseer, A. (2021), 
“AI4people: Ethical guidelines for the automotive sector-fundamental requirements and practical 

https://www.itf-oecd.org/safe-system-approach-action-experience-based-guide-enhanced-road-safety
https://www.itf-oecd.org/adapting-automation-transport-workforce-transition
https://www.itf-oecd.org/automated-vehicles-better-transport-services
https://www.itf-oecd.org/automated-vehicles-better-transport-services
https://www.itf-oecd.org/mix-and-maas-data-architecture-mobility-service
https://www.itf-oecd.org/preparing-infrastructure-automated-vehicles
https://doi.org/10.48550/arXiv.2104.05314
https://doi.org/10.1016/J.PROCS.2014.05.504
https://www.itf-oecd.org/sites/default/files/repositories/session_1_-_siddartha_khastgir.pdf
https://www.itf-oecd.org/sites/default/files/repositories/session_1_-_siddartha_khastgir.pdf
https://ieeexplore.ieee.org/document/1007998
https://scsc.uk/journal/index.php/scsj/article/view/31
https://cerre.eu/publications/report-making-data-portability-more-effective-digital-economy/
https://doi.org/10.1109/MC.2020.3006177
https://lawcom.gov.uk/project/automated-vehicles/
https://doi.org/10.48550/arXiv.2308.02935


REFERENCES 

45 AI, MACHINE LEARNING AND REGULATION: THE CASE OF AUTOMATED VEHICLES © OECD/ITF 2025 

recommendations”, International Journal of Technoethics, 12(1), 101–125, 
https://doi.org/10.4018/IJT.20210101.oa2.  

Matheu-García, S. N., Hernández-Ramos, J. L., Skarmeta, A. F., & Baldini, G. (2019), “Risk-based 
automated assessment and testing for the cybersecurity certification and labelling of IoT devices”, 
Computer Standards and Interfaces, 62, 64–83, https://doi.org/10.1016/J.CSI.2018.08.003.  

MOLIT Ordinace No. 684, (2019), Regulation for Performance and Safety Standards of Motor Vehicle and 

Vehicle Parts [in Korean: 자동차 및 자동차부품의 성능과 기준에 관한 규칙], https://bit.ly/49IAurJ 
(accessed December 16, 2024). 

Moteff, J., & Parfomak, P. (2004), Critical Infrastructure and Key Assets: Definition and Identification, 
Congressional Research Service, Order Code RL32631, https://sgp.fas.org/crs/RL32631.pdf (accessed 
December 16, 2024). 

NTC (2024), Automated Driving System Entity certification, Australian National Transport Commission, 
https://www.ntc.gov.au/sites/default/files/assets/files/ADSE%20certification%20April%202024.pdf 
(accessed December 16, 2024). 

NTSB (2019), Collision Between Vehicle Controlled by Developmental Automated Driving System and 
Pedestrian Tempe, Arizona March 18, 2018, Accident Report NTSB/HAR-19/03US. National Transportation 
Safety Board, https://www.ntsb.gov/investigations/accidentreports/reports/har1903.pdf (accessed 
December 16, 2024). 

New, J., & Castro, D. (2018), “How Policymakers Can Foster Algorithmic Accountability”, Information 
Technology and Innovation Foundation, https://itif.org/publications/2018/05/21/how-policymakers-can-
foster-algorithmic-accountability/ (accessed December 16, 2024). 

NHTSA. (2023a), Early Estimate of Motor Vehicle Traffic Fatalities in 2022, US DOT National Highway 
Traffic Safety Administration Report No. DOT HS 813 428, 
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/813428 (accessed December 16, 2024). 

NHTSA. (2023b), Second Amended Standing General Order 2021-01: Incident Reporting for Automated 
Driving Systems (ADS) and Level 2 Advanced Driver Assistance Systems (ADAS), 
https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety#topic-road-self-driving 
(accessed December 16, 2024). 

NIST. (2023), Artificial Intelligence Risk Management Framework (AI RMF 1.0), 
https://doi.org/10.6028/NIST.AI.100-1.  

OECD. (2019), Scoping the OECD AI principles : Deliberations of the Expert Group on Artificial Intelligence 
at the OECD (AIGO), Organisation for Economic Cooperation and Development, https://www.oecd-
ilibrary.org/science-and-technology/scoping-the-oecd-ai-principles_d62f618a-en (accessed December 
16, 2024). 

OECD (2022), “OECD Framework for the Classification of Ai Systems”, OECD Digital Economy Papers, 
Organisation for Economic Cooperation and Development, https://www.oecd.ai/wips (accessed 
December 16, 2024). 

OECD (2024), OECD AI Incidents Monitor (AIM), OECD.AI Policy Observatory, Organisation for Economic 
Cooperation and Development, https://oecd.ai/en/incidents (accessed on 16 December, 2024). 

https://doi.org/10.4018/IJT.20210101.oa2
https://doi.org/10.1016/J.CSI.2018.08.003
https://bit.ly/49IAurJ
https://sgp.fas.org/crs/RL32631.pdf
https://www.ntc.gov.au/sites/default/files/assets/files/ADSE%20certification%20April%202024.pdf
https://www.ntsb.gov/investigations/accidentreports/reports/har1903.pdf
https://itif.org/publications/2018/05/21/how-policymakers-can-foster-algorithmic-accountability/
https://itif.org/publications/2018/05/21/how-policymakers-can-foster-algorithmic-accountability/
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/813428
https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety#topic-road-self-driving
https://doi.org/10.6028/NIST.AI.100-1
https://www.oecd-ilibrary.org/science-and-technology/scoping-the-oecd-ai-principles_d62f618a-en
https://www.oecd-ilibrary.org/science-and-technology/scoping-the-oecd-ai-principles_d62f618a-en
http://www.oecd.ai/wips
https://oecd.ai/en/incidents


REFERENCES 

AI, MACHINE LEARNING AND REGULATION: THE CASE OF AUTOMATED VEHICLES © OECD/ITF 2025 46 

OICA (2019), “Proposal for the Future Certification of Automated/Autonomous Driving Systems”, Informal 
document GRVA-02-09, International Organization of Motor Vehicle Manufacturers, 
https://unece.org/DAM/trans/doc/2019/wp29grva/GRVA-02-09e.pdf (accessed on December 16, 2024). 

JO (2021), Ordonnance no 2021-443 du 14 avril 2021 relative au régime de responsabilité pénale 
applicable en cas de circulation d’un véhicule à délégation de conduite et à ses conditions d’utilisation, 
Journal Officiel, https://www.legifrance.gouv.fr/jorf/id/JORFTEXT000043370894 (accessed December 16, 
2024). 

Pater, G. (2018), “Challenges and Proposals for Modern Vehicles”, Presentation made to the UNECE 
meeting of the Working Party on Automated/Autonomous and Connected Vehicles – Introduction (GRVA), 
25-28 September, 2018, Informal document GRVA-01-40, 
https://unece.org/DAM/trans/doc/2018/wp29grva/GRVA-01-40.pdf (accessed December 16, 2024). 

Quinn Emanuel trial lawyers (2024), Report to the Boards of Directors of Cruise Llc, GM Cruise Holdings 
LLC, and General Motors Holdings LLC Regarding the October 2, 2023 Accident in San Francisco, 
https://assets.ctfassets.net/95kuvdv8zn1v/1mb55pLYkkXVn0nXxEXz7w/9fb0e4938a89dc5cc09bf39e86ce
5b9c/2024.01.24_Quinn_Emanuel_Report_re_Cruise.pdf (accessed December 16, 2024). 

EU AI Act (2024), Regulation 2024/1689 of the European Parliament and of the Council of 13 June 2024 
Laying down Harmonised Rules on Artificial Intelligence, https://eur-lex.europa.eu/eli/reg/2024/1689/oj 
(accessed December 16, 2024). 

Reisman, D., Schultz, J., Crawford, K., & Whittaker, M. (2018), Algorithmic Impact Assessments Report: A 
Practical Framework for Public Agency Accountability, https://ainowinstitute.org/publication/algorithmic-
impact-assessments-report-2 (accessed December 16, 2024). 

Rudin, C. (2019), “Stop explaining black box machine learning models for high stakes decisions and use 
interpretable models instead”, Nature Machine Intelligence (Vol. 1, Issue 5, pp. 206–215), Nature 
Research, https://doi.org/10.1038/s42256-019-0048-x.  

SAE International, (2021a), Surface Vehicle Recommended Practice: Taxonomy and Definitions for Terms 
Related to Driving Automation Systems for On-Road Motor Vehicles, 
https://www.sae.org/standards/content/j3016_202104/ (accessed December 16, 2024). 

Schoettle, B. (2017), Sensor Fusion: A Comparison of Sensing Capabilities of Human Drivers and Highly 
Automated Vehicles, Sustainable Worldwide Transportation, 
https://public.websites.umich.edu/~umtriswt/PDF/SWT-2017-12.pdf (accessed December 16, 2024). 

Sengar, S.S., Hasan, A.B., Kumar, S., & Carroll, F. (2024), “Generative Artificial Intelligence: A Systematic 
Review and Applications”, Multimedia Tools and Applications, https://doi.org/10.1007/s11042-024-
20016-1.  

Sheikh, H., Prins, C., & Schrijvers, E. (2023), Artificial Intelligence: Definition and Background, 15–41, 
https://doi.org/10.1007/978-3-031-21448-6_2.  

Shimada, H., Yamaguchi, A., Takada, H., & Sato, K. (2015), “Implementation and Evaluation of Local 
Dynamic Map in Safety Driving Systems”, Journal of Transportation Technologies, 05(02), 102–112, 
https://doi.org/10.4236/JTTS.2015.52010.  

Song, D. (2018), “AI and Security: Lessons, Challenges & Future Directions”, Presentation made to the 1st 
Workshop on Deep Learning and Security at the 39th IEEE Symposium on Security and Privacy, 24 May, 
2018, https://www.ieee-security.org/TC/SPW2018/DLS/ (accessed December 16, 2024). 

https://unece.org/DAM/trans/doc/2019/wp29grva/GRVA-02-09e.pdf
https://www.legifrance.gouv.fr/jorf/id/JORFTEXT000043370894
https://unece.org/DAM/trans/doc/2018/wp29grva/GRVA-01-40.pdf
https://assets.ctfassets.net/95kuvdv8zn1v/1mb55pLYkkXVn0nXxEXz7w/9fb0e4938a89dc5cc09bf39e86ce5b9c/2024.01.24_Quinn_Emanuel_Report_re_Cruise.pdf
https://assets.ctfassets.net/95kuvdv8zn1v/1mb55pLYkkXVn0nXxEXz7w/9fb0e4938a89dc5cc09bf39e86ce5b9c/2024.01.24_Quinn_Emanuel_Report_re_Cruise.pdf
https://eur-lex.europa.eu/eli/reg/2024/1689/oj
https://ainowinstitute.org/publication/algorithmic-impact-assessments-report-2
https://ainowinstitute.org/publication/algorithmic-impact-assessments-report-2
https://doi.org/10.1038/s42256-019-0048-x
https://www.sae.org/standards/content/j3016_202104/
https://public.websites.umich.edu/%7Eumtriswt/PDF/SWT-2017-12.pdf
https://doi.org/10.1007/s11042-024-20016-1
https://doi.org/10.1007/s11042-024-20016-1
https://doi.org/10.1007/978-3-031-21448-6_2
https://doi.org/10.4236/JTTS.2015.52010
https://www.ieee-security.org/TC/SPW2018/DLS/


REFERENCES 

47 AI, MACHINE LEARNING AND REGULATION: THE CASE OF AUTOMATED VEHICLES © OECD/ITF 2025 

Srinivas Acharyulu, P. V., & Seetharamaiah, P. (2015), “A framework for safety automation of safety-critical 
systems operations”, Safety Science, 77, 133–142, https://doi.org/10.1016/J.SSCI.2015.03.017.  

Stolte, T., Ackermann, S., Graubohm, R., Jatzkowski, I., Klamann, B., Winner, H., & Maurer, M. (2021), “A 
Taxonomy to Unify Fault Tolerance Regimes for Automotive Systems: Defining Fail-Operational, Fail-
Degraded, and Fail-Safe”, IEEE Transactions on Intelligent Vehicles, 7(2), 251–262, 
https://doi.org/10.1109/TIV.2021.3129933. 

Taeihagh, A., & Lim, H. S. M. (2019), “Governing autonomous vehicles: emerging responses for safety, 
liability, privacy, cybersecurity, and industry risks”, Transport Reviews, 39(1), 103–128, 
https://doi.org/10.1080/01441647.2018.1494640.  

Taleb, N. N. (2012), Antifragile: Things That Gain From Disorder, Random House, ISBN: 1-400-06782-0. 

Thomas, S. (2024), “Generative AI And Self-Driving Vehicles: A Potential Future”, Forbes Online – Council 
Post, Forbes Business Development Council, 
https://www.forbes.com/councils/forbesbusinessdevelopmentcouncil/2024/11/22/generative-ai-and-
self-driving-vehicles-a-potential-future/ (accessed on 16 December, 2024). 

UK DfT. (2022), Reported road casualties Great Britain, annual report: 2021, 
https://www.gov.uk/government/statistics/reported-road-casualties-great-britain-annual-report-
2021/reported-road-casualties-great-britain-annual-report-2021 (accessed on 16 December, 2024). 

UN Regulation No 157 – Uniform provisions concerning the approval of vehicles with regards to 
Automated Lane Keeping Systems [2021/389] (OJ L 82 09.03.2021, p. 75, ELI: https://eur-
lex.europa.eu/eli/reg/2021/389/oj (accessed December 16, 2024). 

van der Waal, S., Stikker, M., Kortlander, M., van Eeden, Q., Demeyer, T., & Bocconi, S. (2020), European 
Digital Public Spaces, waag technology and society - Online European Public Spaces, 
https://culturalfoundation.eu/wp-content/uploads/2021/05/Waag-Report-on-European-Digital-Public-
Spaces.pdf (accessed December 16, 2024).  

World Wide Web Foundation, (2017), Algorithmic accountability: Applying the concept to different 
country contexts, https://webfoundation.org/docs/2017/07/WF_Algorithms.pdf (accessed 16 December, 
2024). 

 

  

https://doi.org/10.1016/J.SSCI.2015.03.017
https://doi.org/10.1109/TIV.2021.3129933
https://doi.org/10.1080/01441647.2018.1494640
https://www.forbes.com/councils/forbesbusinessdevelopmentcouncil/2024/11/22/generative-ai-and-self-driving-vehicles-a-potential-future/
https://www.forbes.com/councils/forbesbusinessdevelopmentcouncil/2024/11/22/generative-ai-and-self-driving-vehicles-a-potential-future/
https://www.gov.uk/government/statistics/reported-road-casualties-great-britain-annual-report-2021/reported-road-casualties-great-britain-annual-report-2021
https://www.gov.uk/government/statistics/reported-road-casualties-great-britain-annual-report-2021/reported-road-casualties-great-britain-annual-report-2021
https://eur-lex.europa.eu/eli/reg/2021/389/oj
https://eur-lex.europa.eu/eli/reg/2021/389/oj
https://culturalfoundation.eu/wp-content/uploads/2021/05/Waag-Report-on-European-Digital-Public-Spaces.pdf
https://culturalfoundation.eu/wp-content/uploads/2021/05/Waag-Report-on-European-Digital-Public-Spaces.pdf
https://webfoundation.org/docs/2017/07/WF_Algorithms.pdf


 

AI, MACHINE LEARNING AND REGULATION: THE CASE OF AUTOMATED VEHICLES  © OECD/ITF 2025 48 

Annex A. List of Roundtable participants 

Chair: Markus REINHARDT, German Federal Railway Authority, Germany  

Special Guest: Stefan SCHNORR, Federal Ministry for Digital and Transport, Germany 

Roundtable participants: affiliations current at the time of the Roundtable. 

Gregorio AMEYUGO, CEA List, France 

Alice ARMITAGE, University of California, USA 

Gianmarco BALDINI, European Commission Joint Research Centre, Belgium 

Miriam BUITEN, Centre on Regulation in Europe, Belgium 

Camille COMBE, International Transport Forum 

Philippe CRIST, International Transport Forum 

Mary "Missy"  CUMMINGS, George Mason University, USA 

Louise DENNIS, University of Manchester, UK 

Jagoda EGELAND, International Transport Forum 

Gillian GILLETT, Caltrans, USA 

Gabriele GRIMM, Federal Ministry for Digital and Transport, Germany 

Aida JOAQUIN ACOSTA, Ministry of Transport, Mobility and Urban Agenda, Spain 

Stig O. JOHNSEN, SINTEF Digital, Norway 

Siddartha KHASTGIR, University of Warwick, UK 

Jinwhan KIM, Korea Advanced Institute of Science & Technology, Korea 

Young-Tae KIM, International Transport Forum 

Changgi LEE, International Transport Forum 

Jaehong MIN, Korean Railroad Research Institute, Korea 

Mohammad Reza MOUSAVI, King's College London, England 

Latifa OUKHELLOU, Université Gustave Eiffel, France 

Florent PERRONIN, NAVER LABS Europe, France  

Martin RUSS, AustriaTech, Austria 

Margriet VAN SCHIJNDEL - DE NOOIJ, Eindhoven AI Systems Institute, Netherlands 

William H. WIDEN, University of Miami, USA 

Anthony WONG, AGC Legal & Advisory, Australia 



Pu
bl

is
he

d:
 0

2/
20

25
 | 

Ph
ot

o 
cr

ed
it:

 A
le

ks
an

dr
a 

Su
zi

/S
hu

tt
er

st
oc

k

From road to rail to shipping, recent technology is leading to 
advances in automated vehicles: driverless cars, trains and boats. 
Known as “AVs”, they promise improved safety and accessibility. But 
they are also cause for concern. Potential risks are linked to data 
quality and representation, the development and verification of AI 
models, increased vehicle travel, land-use impacts, and deskilling of 
vehicle operators.

To safely harness the full potential of automated transport, supporting 
regulation must be able to demonstrate AVs trustworthiness, both in 
terms of safety and ability to serve the collective good. 

This report examines the regulatory approaches to address these 
challenges – in particular focusing on road vehicles. It provides a 
common understanding of AI-based automated transport systems 
and the principles that should form the basis of institutional and 
regulatory actions to increase safety and social acceptability.
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