

Daniel M. Kammen

Co-Director, Berkeley Institute of the Environment Energy and Resources Group & Goldman School of Public Policy Department of Nuclear Engineering University of California, Berkeley

Materials online at: <u>http://rael.berkeley.edu</u>

June 7/8, OECD Joint Transportation Research Centre, "Biofuels: Linking Support to Performance"

High and low carbon pathways

Thanks to the World Business Council for Sustainable Development

High and low carbon pathway >900 ppm Trajectory

Renewable and Appropriate Energy Laboratory - rael.t

Energy by 2050:

- Coal over 2x, no Carbon Capture & Storage (CCS), some coal to liquids.
- Oil up 50%
- Gas over 2x
- Biofuels make up 10% of vehicle fuel mix.
- Electricity 1/3 of final energy.
- Modest increase in nuclear.
- Renewables provide 1/3 of • electricity generation.
- Vehicle efficiency up 50%.

<550 ppm Trajectory Energy by 2050:

- Coal up 50%, but half of power stations use CCS.
- Oil down 10-15%.
- Gas nearly 2-3x (note: adds volatility)
- Biofuels make up 20% of vehicle fuel mix.
- Hydrogen has arrived (if green)
- Strong shift to electricity as • final energy (~50% final energy).
- Strong increase in nuclear.
- Renewables provide half of electricity generation.
- Vehicle efficiency up 100%
- Sustainable biomass practices

Potential for liquid hydrocarbon production (Gbbl)

Source: Brandt and Farrell (2006) Environmental Research Letters (erl.iop.org)

The California commitment - scaled to the nation (rapidly moves beyond planning)

Kammen, "September 27, 2006 – A day to remember", *San Francisco Chronicle*, September 27, Renewable and Appropriate Energy Laboratory - rael.berkeley.edu

A comprehensive GHG strategy: California

Overall goals

- Executive Order S-3-05 (2005)
- Global Warming Solutions Act 2006 (AB32)

Buildings and appliances

• Energy efficiency standards

• Electricity (other large sources)

- Carbon Adder (CPUC)
- Renewable portfolio standard for electricity (SB 107)
- GHG performance standard and cap (CPUC decision, SB1368)

Transportation

- Vehicle GHG performance standard (AB 1493 Pavley)
- Low Carbon Fuel Standard (Executive Order S-1-07)
- Discussions linking growth and energy use (locality specific)

Significant state-level energy R&D

The Critical Role of Standards (an energy efficiency example)

United States Refrigerator Use versus Time Annual drop from 1974 to 2001 = 5% per year

REPORTS

Ethanol Can Contribute to Energy and Environmental Goals

Alexander E. Farrell,¹* Richard J. Plevin,¹ Brian T. Turner,^{1,2} Andrew D. Jones,¹ Michael O'Hare,² Daniel M. Kammen^{1,2,3}

Open access, online, biofuel calculator tools:

http://rael.berkeley.edu/ebamm

Net energy and greenhouse gases

Farrell, Plevin, Turner, Jones, O'Hare & Kammen, "Ethanol can contribute to energy and environmental goals," *Science*, **311**, 506 (2006).

Net energy and greenhouse gases

Farrell, Plevin, Turner, Jones, O'Hare & Kammen, "Ethanol can contribute to energy and environmental goals," *Science*, **311**, 506 (2006).

Net energy and petroleum use

Farrell, Plevin, Turner, Jones, O'Hare & Kammen, "Ethanol can contribute to energy and environmental goals," *Science*, **311**, 506 (2006).

Net energy and petroleum use

Farrell, Plevin, Turner, Jones, O'Hare & Kammen, "Ethanol can contribute to energy and environmental goals," *Science*, **311**, 506 (2006).

An Alternative Fuel is Not Necessarily a Low-Carbon Fuel, but it can be

Gasoline example

(courtesy Alex Farrell, UCB)

	Input	Energy		CI
Baseline	Gasoline	96.3%		92.7
	Ethanol	3.7%	Midwest average (Et1)	75.9
			Weighted Total	92.0
			-1% target	91.1
Default	Gasoline	96.3%		92.7
	Ethanol	3.7%	Midwest corn dry mill (Et2)	114.0
			Weighted Total	93.5
Opt-in	Gasoline	96.3%		92.7
	Ethanol	3.7%	CA corn NG dry mill wet DDGS (Et74)	51.5
			Weighted Total	91.1

Note: The uncertainty and variability in these values is large but rarely acknowledged. Our report highlights this issue and discusses some possible ways to manage this uncertainty, and research needs.

LCFS developments worldwide

- Renewable Fuel Standard (RFS)
 - United States: double biofuel use by 2012 to ~6% of gasoline.
 - UK Renewable Transportation Fuel Obligation (RTFO): 5% by 2010
- Low Carbon Fuel Standard (LCFS)
 - California: regulations to be in effect 2010
 - Federal bills: Boxer, Feinstein, Obama, Inslee, etc.
 - European Union: monitoring in 2009, reductions start in 2011
 - United Kingdom: RTFO requires GHG monitoring, pilot in 2007
 - British Columbia (May, 2007), WA, OR, AZ, NM, MN, and...?
- Current and forthcoming analysis
 - Draft Carbon Reporting Methodology under the RTFO. E4Tech. Dec06
 - Sustainability Reporting within the RTFO. ECOFYS. Feb07
 - o Creating Markets for Green Biofuels. UC Berkeley study. April07
 - o AB1007 Well-to-Wheels Analysis. CEC/CARB study. May07
 - Low Carbon Fuel Standard for California. UC Berkeley/Davis. May07

Sub-Saharan Africa's wood-energy consumption is the highest in the world

Primary production of biomass energy in 2000 (10¹⁸ Joules)

Sub Saharan Africa	10.2
China	8.9
India	8.4
Latin America	3.2
Source: IEA, 2003	

Charcoal is not just

an Africeneicable and ApproSource: Bailis, Ezzati & Kammen, Science (2009)

The Developing Country Context: Africa Example

Social-ecological Impacts:

- o Over 200,000 people employed in Kenya
- ~ \$300 million in annual revenue (equivalent to tourism)
- Extensive but poorly characterized supply chains
- Ambiguous and inconsistent regulations
- Strong association with environmental degradation

Annual per capita energy consumption (GJ per person - 1999)

Daily load curves for optimal charging scenario with compact cars

Break-Even Costs for Improved Batteries in HEVs and PHEVs by Vehicle Type and Cumulative Annual GHG Reductions Compared to CVs (US, PHEVs on NGCC, Carbon Tax: \$10/tonne CO2eq)

Envisioning a R&D Plan for Sustainable Biofuels

A sectoral approach (courtesy Alex Farrell, UCB)

- An economy-wide approach fails to meet other goals
 - At a "low" price (<\$25/tonne), little would happen
 - At \$25-\$50 per tonne, electricity would start to decarbonize significantly while little would happen in buildings and transport
 - Innovation would be narrowly focused (goal #2), maybe not dynamically efficient
 - The "side benefits" of cutting petroleum use are lost (goals #3, #4)
 - Prices high enough to cause transportation to decarbonize might force disruptive change in the electricity sector
- Costs and fuel-on-fuel competition (@ \$1/tonne CO₂)
 - Nuclear + Renewables
 - Integrated gasification combined cycle with \$0.1/MWh carbon capture and storage (IGCC+CCS)
 - Natural gas combined cycle (NGCC)
 - Pulverized coal (PC)
 - Gasoline

\$0.0/MWh

- \$0.5/MWh
 - \$0.8/MWh \$0.01/gallon

Actual Growth vs. Histor Forecasts

Japanese "Sunshine" Program

If you think US public sector energy R&D funding is doing poorly ...

Kammen and Nemet (2005) "Reversing the incredible shrinking energy R&D budget," *Issues in Science & Technology*, Fall, 84 - 88.

"Reversing the incredible shrinking energy R&D budget," Issues in Science & Technology, Fall, 84 - 88.

Quantifying the benefits of R&D R&D Funding \rightarrow Technological change \rightarrow Cost reductions

Renewable Energy Portfolio Standards 23 states + DC, and counting

Solar & Distributed Generation Provisions in RPS Policies

Opportunities for Action

- Raise our expectations, and investments, in clean energy
 We now <u>must</u> have 'one California' per year ... for decades
- Recognize the sectoral differences between transportation and stationary power <u>and</u> the linkages
- Examine the range of options under a Low Carbon Fuel Standard (LCFS)
- •Plan beyond the important first step of the LCFS to a Sustainable Fuels research program

Extra Materials - addendums

	Cop	tinuc	d avampla for ageolin	<u> </u>			
	Input	Energy	a example for yasonin	IECI	% change		
Default	Gasolin	96.3%		92.7	7		
	е						
Worst	Ethanol	3.7%	Midwest corn dry mill (Et2)	114.()		
Common			Weighted Total	93.5	5 +1.6%		
Opt-in 1	Gasolin	96.3%		92.7	7		
	е						
Good	Ethanol	3.7%	CA corn NG dry mill wet DDGS	51.5	ō		
			(Et74)				
Practice			Weighted Total	91.1	l -1%		
Opt-in 2	Gasolin	96.3%		92.7	7		
	е						
Best	Ethanol	3.7%	MW corn stover dry mill wet DDGS (Et6)	23.6	5		
Practice			Weighted Total	90.0) -2.1%		
Opt-in 3	Gasolin	93.3%		92.7	7		
	е						
F10 and and 19 and							

E10 and en Ethandel and Approprivate Emstgyer adry mildry vetr DDGS erkel 23. Edu