

CharIN e.V.

Perspective on standardization developments

CharIN association

Organisational Structure

Summary

CCS Scope

Scope of application

Motorbike
Car
Bus | Truck

CharIN association

Our members – currently 188 (total) 1/2

Core Members

CHARIN Core members: 104

CharIN association

Our members – currently 188 (total) 2/2

Membership Share

c/o innos - Sperlich GmbH

Top 20 passenger car brands 2018 by volume

High Power Charging for Commercial vehicles

Task Force HPCCV

A CharIN task force was formed in March 2018 with the following purpose statement:

"Define a new commercial vehicle high power charging standard to maximize customer flexibility." It was named the High Power Charging for Commercial Vehicle Task Force (HPCCV for short)

Charl N Appointed
Task Force Lead

Rustam Kocher DTNA - EMG

The team

The requirements

Process

- The HPCCV held a requirements-gathering process including all stakeholders.
- Subgroups were formed and created their requirements, which were then aggregated.
- An in-person meeting was held in September 2018 to gain group agreement on the requirements. They were later finalized during online meetings.
- Those requirements were then approved by the CharlN Board of Management on Nov 28, 2018
- For complete list please visit: https://www.charinev.org/hpccv/?no_cache=1

Requirements (not a complete list)

- o single conductive plug
- o max 1500 DCV
- o max 3000 DCA
- o PLC + ISO/IEC15118
- o touch-safe (UL2251)
- o on-handle software-interpreted override switch
- o adheres to OSHA and ADA requirements
- o FCC Class A EMI
- o located on the driver side of the vehicle, hip-height
- o capable of being automated
- o UL (NRTL) certified
- o cyber-secure
- V2X (bi-directional)

The market situation

There are many public DC charging standards...but none are sufficient for commercial trucks

	USA-Japan	Europe	USA-Japan-Europe	China
•	Combo 1: Combined AC & DC	Combo 2: Combined AC & DC	Chademo	GB/T

They were all designed to quickly charge passenger cars, not commercial trucks. Existing and future passenger car charging limits are 500-600A.

In order to charge a truck carrying 200-600 kWh batteries in 20-30 minutes, the charge time requested by customers, trucks will require power levels of **over 2 MW and current over 2000A**.

None of the existing public standards are capable of providing the power needed to quickly charge commercial trucks, which will require 4 to 10 times higher charging power than existing passenger car charging systems!

The charging systems

The status of evalutation

- Selection has been made, iterative development is underway: After a call for submission to solve the
 requirements, 5 propositions have been presented. The HPCCV task force voted in May 2019, and there was
 overwhelming consensus to pursue a hand-held conductive charging plug and socket capable of 3000 A.
- The Task Force is now focused on iterative testing and validation of this selection: Ongoing weekly
 technical meetings discussing details of the future standard, including voltage range, current capability and
 associated thermal performance, plug/socket geometry fit and function, etc.
- Multiple stakeholders have agreed to build prototypes by Q1 2020.
- The goal of the task force is compile a complete requirements document, including plug geometry, which can be submitted to a standards defining organization in 2020 to become the worldwide standard for charging commercial vehicles.

The way of standardization

- Full committment of German truck CTO's to bring HPCCV to international standardization
- Task to German Norms and Standards Authority (NA AA37) and DKE to start the process
- Standardization Kick Off workshop at December 13th 2019 to define scope, organization and process
 - Agreement on HPCCV requirements set
 - New DC coupling device will be based on already standardized definitions for System C (CCS), with DC only
 - Input of the HPCCV TF will be respected in the further steps of standardization
 - A new work item proposal to start the connector standardization will be applied in IEC TC69 as a new part of IEC62196 \rightarrow end of 02/20
 - Preparation of a system description proposal to be inserted into the CCS related international standards where necessary (e.g. IEC61851-series, ISO15118, ISO17409, ISO 21498-1) → end of 2020
- Project Kick Off workshop at February 6th 2020 for creating a HPCCV corridor project
 - Four european OEMs with grid companies, technology providers, logistics and CPOs

Contact details

Phone +49 30 288 8388 0 Fax +49 30 288 8388 19

E-Mail coordination@charinev.org

Web www.charinev.org

@charginginterface

@worldwideccs

@CharIN e.V.