Evolution of technology for commercial vehicle safety

Peter Sweatman Principal, CAVita LLC

CAVita

Giving life to transformational technology in transportation

Agenda

- A technological tipping point
 - Brought about by CAV
- Imposed on a century-old transportation system
 The rate of change has *changed*
- The process of deployment
- Heavy commercial vehicle safety technology, then and now
- CV and AV have specific significance for heavy vehicles
- Embracing "heavy vehicle CAV"

A technological tipping point

- Connected vehicles and infrastructure (CV)
- Automated vehicles (AV)
 - Including highly-automated vehicles (HAVs)
- Surrounded by:
 - Shared Mobility (SM), Big Data, Smart Cities & Communities, Cybersecurity, Internet-of-Things
- Enabled by:
 - Sensors, software, cloud services, computation, robotics, artificial intelligence, consumer electronics

Technology and Policy Driving Mobility

TRB Partners in Research Symposium: Transformational Technologies

Detroit, Michigan – October 31 – November 1, 2016

Century-old transportation system

- Drivers, vehicles and infrastructure
- Tremendous incremental progress

 For example, crash rates continue to decline
- But not sustainable for another century
- New technologies cut right across the old silos
 Safety, traffic efficiency, emissions, energy, economics
- The 21st Century mobility system is connected, automated and shared
- Vehicles will be tailored to operating domains and use cases

Key transformational metrics

- Fatalities and injuries
- Delay in traffic
- Energy consumption
- Carbon emissions
- Customer satisfaction
- Supply chain efficiency

The rate of change has changed

- Conventional R&D model is linear: research, protoyping, testing, modification, deployment
- We now need rapid learning cycles based on large deployments
 - This has been the successful model of the auto industry
 - Commercially successful products require multiple cycles of deployment with increasingly large groups of users
- The same model applies to CAV; in addition it becomes a public-private activity, or set of activities
 - There is no rule book for "public-private learning cycles"
 - Current examples include pilots, demos, model deployments, field operational tests, challenges, etc

The process of deployment

- Model deployments (eg. Safety Pilot, Ann Arbor)
- Fake cities
 - Mcity
 - Willow Run (MI), RELLIS (Tx), GoMentum (CA)
- CV pilots
 - NYC, Tampa, Wyoming
- Advanced Transportation and Congestion Management Technologies Deployment Program (ATCMTD)
 - Marysville OH
- Public-private consortia
 - Safety Pilot, Mobility Transformation Center (MTC), American Center for Mobility, RELLIS (Tx), GoMentum, Virginia Automated Corridors, I70 Mountain Pilot
- Smart City Challenge
 - \$50M prize
 - One winner out of 78 cities: <u>Columbus</u>

Mcity: opened by U-M and MDOT July 20, 2015

Streetscape in Downtown Mcity

RELLIS Campus at Texas A&M

CV and AV can proceed independently on parallel paths but will converge to produce "connected automation"

Path to CV

Connected Vehicles

- Voluntary fitment of V2V and I2V by OEMs
- Aftermarket fitment
- Introduction of V2V rule
 - NPRM released December 2016
- Significant penetration by 2025

Connected Infrastructure

- V2I guidance from FHWA
 Anticipated soon
- V2X pilots (NYC, Tampa, Wyoming)
- AASHTO SPAT challenge
- Actions by State DOT's, MPOs and cities
- Significant penetration of signalized intersections by 2025

Continuing issues for CV

- Exclusive access to 5.9 GHz spectrum
 - FCC will decide whether to allow multiple uses and to auction part or all of the spectrum (currently reserved for safety applications)
- Cybersecurity & privacy
 - Authority for issuing security certificates
 - Monitoring of security breaches
 - The auto industry has created an Auto ISAC (Information Sharing and Analysis Center) under the Alliance of Automotive Manufacturers

Path to AV

Automated Features

- Voluntary fitment of automated features by OEMs
- Fitment of automated features under NHTSA agreements
- Significant penetration by 2025

Highly-Automated Vehicles (HAVs)

- Rules of the road at state level
- NHTSA issuing AV interpretations of FMVSS
- USDOT field operational tests (FOTs) – to be announced
- Low-speed trials
- Smart cities deployments
- On-demand fleets in precincts and cities
- NHTSA guidance on highlyautomated vehicles (HAV's)
- Readiness for on-demand mobility services by 2025

Continuing issues for AV

- Occasional engagement of human driver
- Mixed driverless/driven vehicles
- Liability
- Cybersecurity & privacy
- Compliance with federal motor vehicle standards
- No national roadmap to HAV deployment
- Too many questions, inhibiting collaboration
- Shared mobility accelerates deployment, but brings more questions

Convergence of CV and AV paths

HCV safety technology in its own right

Advanced Collision Avoidance Systems (ACAS)

Light vehicle

- NHTSA rulemaking
- NHTSA safety advisories
- Consumer awareness and demand

Heavy vehicle

- NHTSA rulemaking
- Fleet safety programs

CV

Light vehicle

- NHTSA rulemaking
- FHWA guidance
- AASHTO policy studies
- Traffic control and aftermarket products
- Personal devices

Safety focus

Heavy vehicle

- Same platform and infrastructure as LV
- HV-specific applications
- Fleet involvement in chain of communication
- Potential for signal priority
- Platooning leads the way
- Convergence of CV and AV has begun

Freight efficiency focus (and safety focus)

Driver Assistive Truck Platooning

North American Council for Freight Efficiency (2013). CR England Peloton Technology platooning test Nov 2013.

AV

Light vehicle

- NHTSA OEM agreement for AEB
- NHTSA Automated Vehicles Policy
- Path to HAV is uncertain

Heavy vehicle

- NHTSA policy applies to HV
- Path to HAV is more uncertain
 - Transitional, security, liability and ethical questions
 - ODDs and OEDRs differ from those for LVs

Use cases considered by Volpe/NHTSA

Review of Federal Motor Vehicle Safety Standards (FMVSS) for Automated Vehicles

Automated Vehicles

- Highway automation
- Driverless valet
- Truck platooning
- Aftermarket highly-automated driverless vehicle kit
- Conventional vehicle with highlyautomated OEM kit
- Highly-automated, conventionally designed vehicle

Driverless Vehicles

- Highly-automated vehicle with advanced design
- Highly-automated vehicle with novel design
- Riderless delivery motorcycle
- Driverless delivery vehicle (light duty/heavy duty)

Smart Cities and Communities

Light vehicle

- Avenues for model deployment of CAVs, SM, AFVs and data analytics
- Hard to scale and mainstream nationally

Heavy vehicle

- CAV precincts and corridors are more self-contained and permanent
- Equipped trucks can benefit in multiple locations
- Seeking further accommodations once trucks are equipped

Big Data Analytics

Light vehicle

- HAV data will need to be curated and shared
- New independent roles and trust mechanisms to be established

Heavy vehicle

- Sharing of CV and AV data has a bigger purpose
- Public sector investment in supply chain efficiency
 - Which technologies, which benefits?

The case for embracing "heavy vehicle CAV"

- Heavy vehicle CV addresses efficiency as well as safety
- Heavy vehicle AV concentrates on automated features for safety (rather than HAV)
- Specific aspects of CV and AV are brought together; CV and AV are already converging in the form of platooning
- "Heavy vehicle CAV" has universal application in precincts and corridors
- Precincts and corridors are easier to replicate; data supports supply chain efficiency and investment

Move forward on CAV specific to heavy vehicles in precincts and corridors; Prepare for HAV by reducing uncertainty.