New approaches for accounting for confounding factors when analysing collision data to predict collision hotspots and evaluate road safety schemes

Dr. Neil Thorpe and Dr. Lee Fawcett; Paulo Humanes, PTV Group

School of Engineering and School of Mathematics, Statistics and Physics, Newcastle University (UNEW); UK

Presentation to the 6th IRTAD Conference 'Better Road Safety Data for Better Safety Outcomes'

10th-12th October, 2017 Marrakech, Morocco

Civil Engineering &Geosciences

Contents

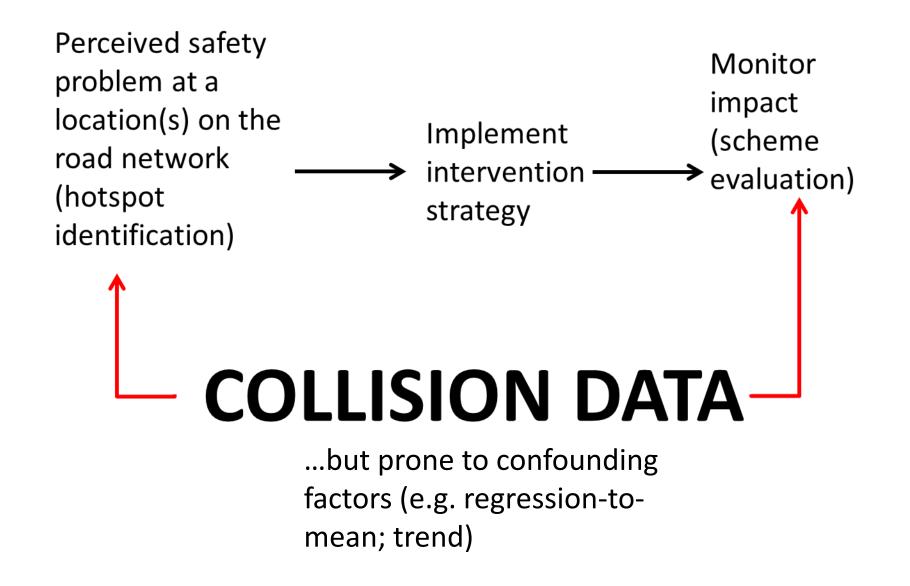
1. Confounding factors:

- What are they?
- Why should we account for them?
- How can we account for them?

2. Overview of the methodology developed

- Data from multiple time-periods
- Global and site-specific trends
- Variance-inflation factor
- Bayesian posterior predictive distribution; model validation

3. Application in available software programs


- RAPTOR (UNEW)
- VISUM Safety (PTV)

4. Benefits of the Approach

- Scheme Evaluation
- Hotspot prediction

Civil Engineering & School of Mathematics & Statistics

School of

thematics

Statistics

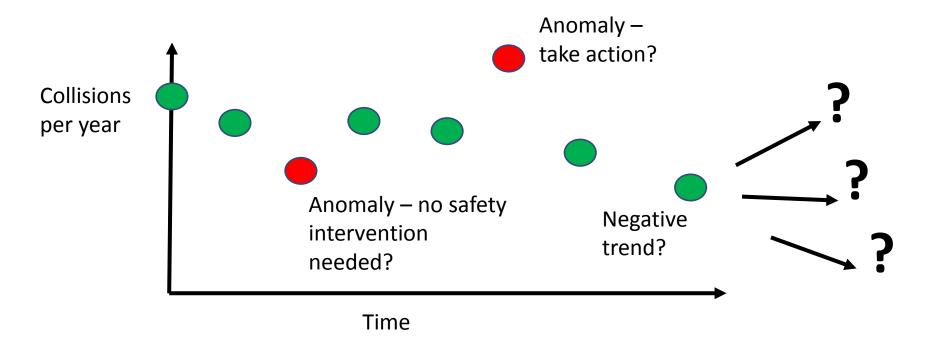
1. Confounding factors

"Any factor that may lead to confounding...e.g. to effects that may erroneously be mixed up with the effects of a road safety measure" (Elvik; 2004 p. 1032)

- **Regression-to-the mean** (the tendency for unusually high or low counts to be followed by values closer to the underlying mean)


- General trends in collisions/casualties (for example due to changes in vehicle safety and driver education)

Remove confounding effects from our analyses


Variation over time and between sites

Problems for scheme evaluation and hotspot prediction

School of

Ma

thematics

&Statistics

Why are confounding factors a problem?

Cause 'noise' in the collision count (time series) data

For hotspot identification:

- False positives: identifying and treating sites as hotspots when they are not – collision rate would have reduced anyway; an issue of 'wasted' resources
- False negatives: not treating a genuinely unsafe site; impact for future collision rates

For scheme evaluation:

School of

 Believing that our schemes are being more effective than they actually are – value for money issues and 'misguided' future decisions

Accounting for RTM and Trend

RTM

- Ignore it assume it doesn't exist
- Bayesian techniques (Empirical or Full)
 - Not widely accessible to practitioners
- Trend
 - Ignore it

School of

- Network-wide and site-specific trends
- Relative influence of more recent observations and observations further back in time

2. Overview of the methodology

Key functions:

- Hotspot prediction (Fawcett et al., 2017)
- Scheme evaluation (Fawcett and Thorpe, 2012, 2013)

RTM

- Combines what we observe at a site with a state-of-the art model-based estimate of safety
- Natural extension to classic methods (e.g. Empirical Bayes) to account for observations across multiple time periods (hotspot)
- Variations in historical data to inform predictions of future counts (hotspot)
- Crash modification factors to account for discrepancies between APM and observed accident counts caused by missing data (hotspot)

Trend

School of

& Geosciences

School of

hematics

Statistics

Ma

- Simple multiplicative factor applied to accident prediction model based on historic records or include time as a covariate in the model (Scheme evaluation)
- Variance inflation (predictions rely more heavily on more recent observations) (hotspot)
- Allows for statistically significant site-specific deviations to offset globally-observed trend when predicting future collision counts (hotspot)

Data requirements

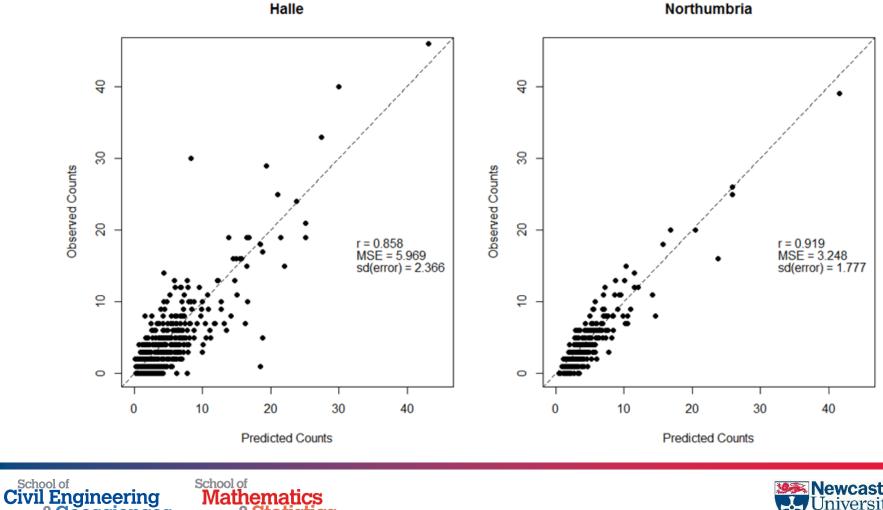
Hotspot prediction and scheme evaluation

- Dependent variable: Collision/casualty counts in discrete time periods (e.g. months, quarters or years) for each site
- Independent variables: Static site data (e.g. speed limit; road type; road class, urban/rural); dynamic site data (e.g. flow; average speeds) for each time period

Scheme evaluation only

School of

Mathematics


& Statistics

• The same but for a reference pool of sites to construct the accident prediction model

Validation: how good are the hotspot predictions?

& Geosciences

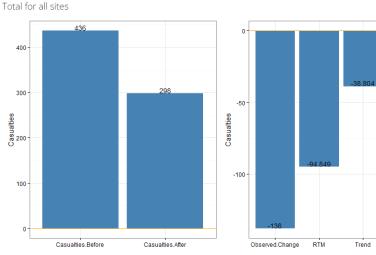
&Statistics

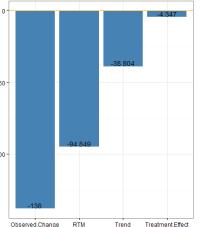
Newcastle University

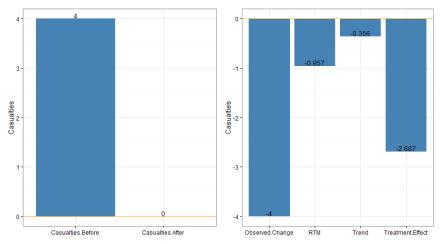
3. Application in available software

RAPTOR

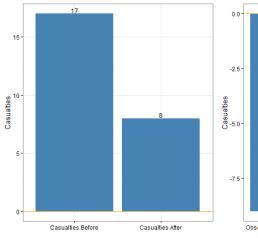
- Hosted on UNEW servers; web-based
- •Logins/passwords freely available
- •Supports hotspot prediction and scheme evaluation

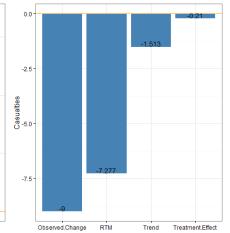

VISUM Safety


- •Available from PTV Group under licence
- •Supports hotspot prediction only
- •Allows mapping of future collision sites
- •Linked to strategic transport model VISUM for scenario testing


RAPTOR: Scheme Evaluation

20 20 -0 --1 78 15 --5 -Casualties 0 Casualties -15 -5. -20 Casualties.Before Casualties.After Observed.Change RTM Trend Treatment.Effect

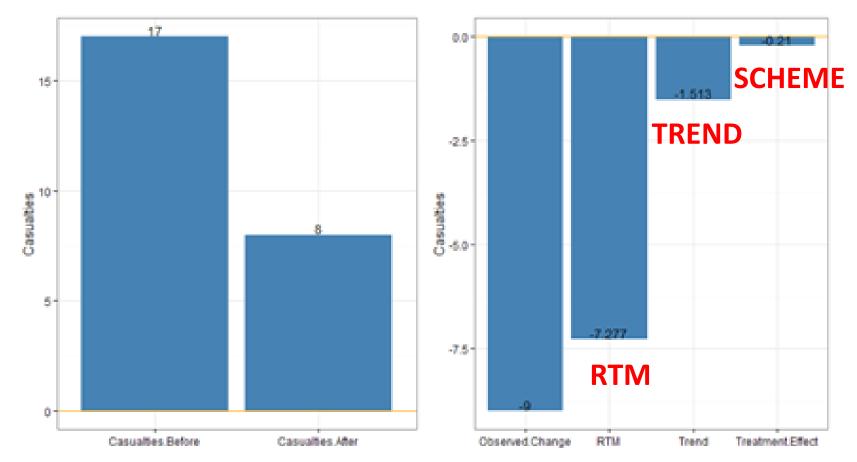




&Statistics

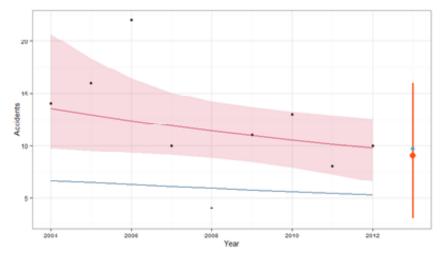
Site Number 5

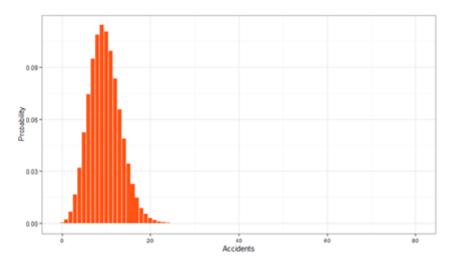
Site Number 1



Site-by-site breakdown: Site 5

Site Number 5


&Statistics



RAPTOR: Hotspot Prediction

Site ID: 960

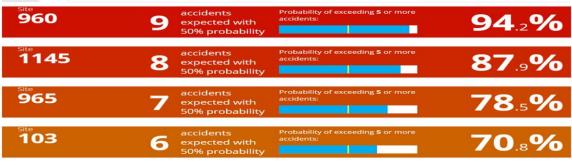
Results

Summary Tables

Predicted number of accidents	APM Output	Site Warnings

Site Warnings

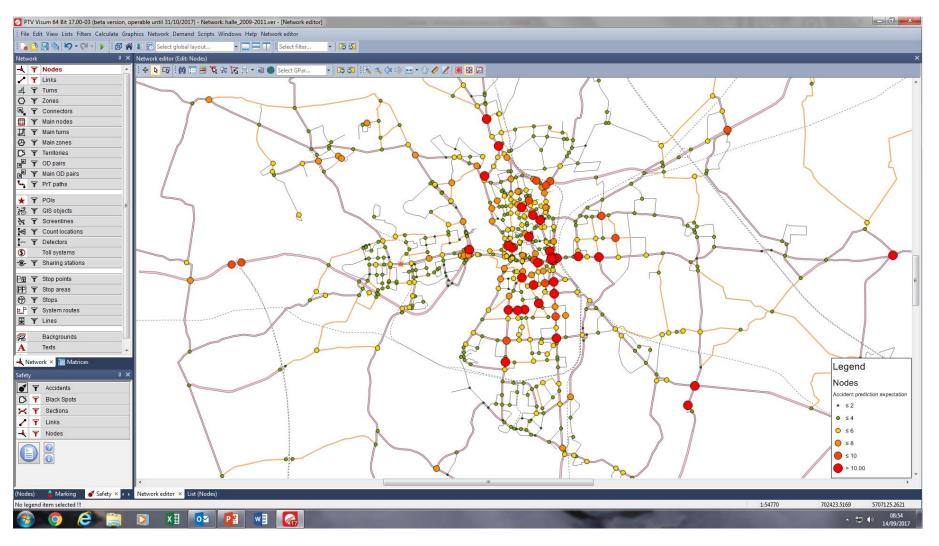
Set Warning thresholds


Warnings can be triggered for sites that are predicted to exceed a specified number of accidents with the selected probability or higher

Sites with warnings

Showing sites that are predicted to have 5 accidents next year with 50% probability or higher. There are 4 sites with warnings.

Table List



Mathematics &Statistics

VISUM Safety: Current clusters

VISUM Safety: Output and Analysis

🚺 🗄 5° ở° Ŧ

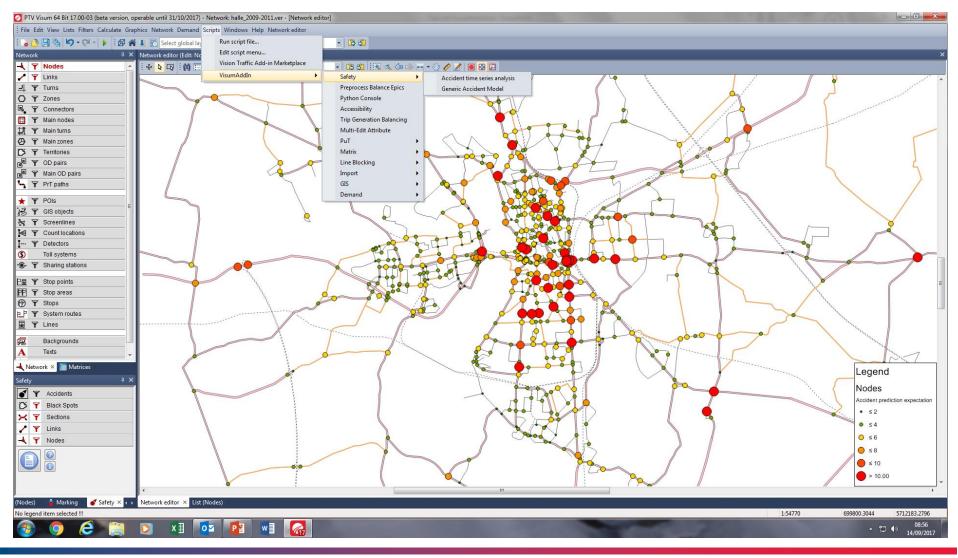
 \bullet : \times \checkmark f_x Signalized

B9

Time-Series-Test [Read-Only] - Excel

? I – P × Neil Thorpe • O

FILE HOME INSERT PAGE LAYOUT FORMULAS DATA REVIEW VIEW DEVELOPER ADD-INS


A B	C D	E	F	G		н	I	J	K	L	M	N	0	P	Q	R	S	Т	U	V	W	Х	Y	Z	AA
	mber of L Volume		Y_2010	Y_2011	Y_E)								B_EXP	LAMBDA_200 LA				2							
101 unknown	3 54021.6		9	6	10	7.619	4.784482	4.63607	4.492261	4.352914	2.630085	1.687556		7.96025546 7			7.39811941								
102 unknown	3 636.537		3	1	1	1.799	3.281305	3.17952	3.080893	2.985326	2.630085	0.601223	-0.024775	2.07301039	1.959552	1.85230373	1.75092565								
103 Signalized	3 1661.03	467	7	8	9	6.62	5.827124	5.20487	4.649064	4.15261	2.51853	1.503414	0.025348	8.32752331 7	62921722	6.9894679	6.40336462								
104 unknown	3 750.918	903	9	5	3	3.612	3.283957	3.182091	3.083384	2.987739	2.630085	1.34998	-0.175582	6.29844562 5	12028604	4.16250673	3.38388579								
106 unknown	3 2277.82	988	4	2	2	2.59	3.319572	3.216601	3.116824	3.020141	2.630085	0.850779	-0.032667	3.01490096 2	82748983	2.65172841	2.48689176								
110 unknown	4 61233.8	354	3	0	0	2.59	5.03457	4.8784	4.727075	4.580443	2.630085	0.850779	-0.032667	4.57249607 4	28826155	4.02169614	3.77170004								
113 unknown	3 280.955	716	2	3	1	2.17											11140492								
114 Signalized	4 1369.3	017	12	8	8	6.42	14										28823948								
115 unknown	4 1868.80	131	9	12	3	4.65:											34759031								
116 unknown	3 37006.0	769	1	6	5	4.93											53903464								
117 unknown	4 38059.6	422	7	3	2	3.04	12	•									.9940933								
118 Signalized	4 12743.9	032	24	26	21	16.89											.5982159								
119 Signalized	3 3799.41	486	14	4	5	4.32		•)3037995								
122 unknown	4 5267.8	105	2	8	10	7.48	10			_							.1499003								
123 unknown	3 4307.69	324	4	13	8	7.01					_						39507973								
124 Roundabout	7 2673.40	491	24	21	25	19.10											.1429667								
125 unknown	3 464.205	644	6	8	5	4,90	0				•						34639299								
126 Signalized	4 557.912	358	8	2	4	3.61											31175311								
127 unknown	3 2234.11		11	8	10	7.27	6									8	7722668								
130 unknown	4 3088.39			10	19	10.6		-									.2436512								
131 unknown	3 2979.27		0	1	2	10.6											.2357564								
132 unknown	3 2970.1		1	0	3	10.6	4									•	.2350954								
133 unknown	4 1061.47		4	9	4	4.68											33961517								
134 unknown	3 2787.72		4	3	5	3.78											75385088								
135 unknown	3 3623.65		2	5	4	3.71	2										.6041739								
136 Signalized	4 1196.97		10	7	7	5.8											72930442								
138 unknown	4 1922.96		0	1	2	5.8											20389845								
139 unknown	4 2905.97			10	11	7.84	0									4	75144294								
140 unknown	3 2793.93		5	5	2	3.19		1			2		3			4	11647916								
140 unknown 141 unknown	3 2793.93		7	3	3	3.335	2.221031	3.22833	3.128208	3.0311/3	2.000000	1.14/32/		4.00843723 4											
142 Signalized	4 3445.82		7	9	4	5.044	6.087321	5.437282	4.856658	4.338036	2.51853	1.157717		7.49999269 6											
142 Signalized	3 3445.98		5	5	3	3.606	6.087321	5.437282	4.856677	4.338058	2.51853	0.821485		5.10898416 4											
143 Signanzeu 144 unknown	3 7646.9			34	28	19.769	3.447902	3.340949	3.237315	3.136895	2.630085	6.440255		23.6315827 2											
145 Signalized	3 1449.77		1	1	20	19.769	5.79707	5.178026	4.625086	4.131193	2.51853	6.440255		39.7325501 3											
145 Signalized	3 1169.72		3	3	6	4.419	5.757471	5.1/8026	4.625086	4.151195	2.51855	0.912633		4.16905281 4											
146 Signalized	4 876.293			3 10	15	4.419	5.757471	5.142655	4.593492	4.102973	2.51853	2.537553		4.16905281 4											
	4 8/6.29		5	6	4	4.153	5.785918	5.105852	4.616189	4.07361		0.982197													
148 Signalized 149 Signalized	4 1371.10		11	7	4		5.785918		4.571185	4.123246	2.51853 2.51853	1.37603		5.62507147 5		6.2900877									
149 Signalized 150 unknown	3 763.316		11	7	6	5.257 6.451	3.284245	5.11768 3.182369	3.083654	2.988001	2.630085	2.284784	-0.066004	8.99654445 7 9.0771683 7											
150 unknown 151 unknown	3 310.431		2	8	4	4.408	3.284245		3.083654	2.988001		1.395968		4.37346421 4											
			9	8	4			3.172204			2.630085														
152 Signalized	4 960.826		-		-	4.423	5.728107	5.116427	4.570065	4.082047	2.51853	1.155708		7.66625517 6		5.28166068									
153 unknown	3 794.981	.645	2	3	2	2.34	3.28498	3.183081	3.084344	2.988669	2.630085	0.807997		2.59355528		2.4921407									
154 unknown	3	•	3	1	3	2.542	3.266582	3.165255	3.06707	2.971931	2.630085			2.55432631 2											
155 unknown	4 3481.5		14	-	13	7.518	3.347922	3.244071	3.143442	3.045934	2.630085	2.556349		9.54800205											
156 unknown	3 3364.94		2	0	1	7.518	3.345164	3.241399	3.140853	3.043425	2.630085	2.556349		9.54013646 8											
157 unknown	3 9241.98		10	4	3	3.383	3.486973	3.378809	3.274	3.172442	2.630085	1.244807		6.63801201 5											
158 Signalized	4 4338.52		4	3	1	2.298	6.221792	5.557393	4.963943	4.433864	2.51853	0.53291		3.48300436 3											
159 unknown	4 3851		11	3	8	5.925	4.288059	4.155046	4.026159	3.901269	2.630085	1.53571	-0.046331	7.22457926 6			5.7199708								
Tabelle1	Tabelle2	\oplus													E .										
CALCULATE																							# 🗉	四 - —	

VISUM Safety: Predicted clusters

4. Benefits of the approach

Peer-reviewed approach accessible to road safety practitioners to aid decision-making

Information about 'true' effect of road safety interventions on collision/casualty reduction

Predictions of collision/casualty frequency in a future time period: site prioritisation

Evidence-led and proactive approach to road safety investment

School of

References

Thorpe N, Fawcett L. (2012) 'Linking road casualty and clinical data to assess the effectiveness of mobile safety enforcement cameras: a before and after study.' BMJ Open, 2(6), e001304. <u>http://bmjopen.bmj.com/content/2/6/e001304?ct</u>

Fawcett, L.; Thorpe, N. (2013) Mobile safety cameras: estimating casualty reductions and the demand for secondary healthcare. Journal of Applied Statistics 40(11), 2385-2406

http://www.tandfonline.com/doi/full/10.1080/02664763.2013.817547

Fawcett, L.; Thorpe, N.; Matthews, J.; Kremer, K. (2017) A novel Bayesian hierarchical model for road safety hotspot prediction. Accident Analysis & Prevention, 99, pp.262-271.

http://www.sciencedirect.com/science/article/pii/S0001457516304341

RAPTOR logins and further information available from Neil.Thorpe@ncl.ac.uk

