International Transport Forum New Delhi – 18 & 19 – 12 - 2013

The Performance of High Speed Rail in France: From Appraisal Methodologies to Ex-Post Evaluations

Pr. Yves Crozet University of Lyon (Institute of Political Studies) Laboratory of Transport Economics (LET)

Laboratory of Transport Economics

Contents

- 1) HSR "models" in Europe and in France
 - HSR in Europe: an overview
 - HSR in France: the Paris Lyon « model »
- 2) The conditions of HSR success in France

3) Is French HSR network close to its optimal size?

European Union White Paper goal n°4

- By 2050, complete a European high-speed rail network.
- Triple the **length of the existing high-speed network** by 2030 and maintain a dense railway network in all Member States.
- By 2050, **the majority of medium-distance** passenger transport should **go by rail**

L'EUROPE DE LA GRANDE VITESSE HIGH SPEED EUROPE

EDINBURGH

ليؤمدن

UNITED KINGDOM

Middesbrough

ONDON

BELEAST

Weatherd

Checker

Shrewsbur

IRELAND

SWEDEN

REBUIK

LITHUA

KALININGRAD

WARSZAWA

+602

BEOGR

SER

PODGOR

ALBA

18

Gonta COANSK

POLAND

Zielone Gine

DENMARK

Brichertav BRENE

HANNOVE

NETHERLANDS

KØBENHAVN

Rostuck

SCHWERIN

High Speed Trains Traffics in Europe (Billion of pass.km/year)

A Swedish point of view

Contents

- 1) HSR "models" in Europe and in France
- 2) The conditions of HSR success
 - Demand side (intensity of traffic)
 - Supply side

3) Is French HSR network close to its optimal size?

HSR: the key factor of success

- Geography: size of the cities, distance between cities (gravity model)
- Economy: level of life
- History and institutions
- Rail industry + rail operator
- Technology
- Politics....

Passenger Mobility: the demand for speed

HSR market share and travel time

High Speed Rail/ Air Market Share

Intensity of traffic

Travel Volume versus Network Length (1964 - 2011)

Supply side (economic viewpoint)

- Appraisal methodologies and traffic forecasts
- Yield management of train operator => high load factor
- Yield management of Rail Access Charges (Ramsey-Boiteux pricing scheme)

Rail access charges in Europe (2010)

Contents

- 1) HSR "models" in Europe and in France
- 2) The conditions of HSR success in France
 - 3) Is French HSR network close to its optimal size?
 - What do we learn from ex-post evaluations
 - The limits to the extension of HSR network

From ex-ante to ex-post evaluations The socio-economic IRR

	Ex ante	Ex post
LN 1 (Sud Est)	28,0%	?
LN 2 (Atlantique)	23,6%	12,0%
LN3 (Nord Europe)	20,3%	5,0%
Interconnexion	18,5%	15,0%
LN4 (Rhone-Alpes)	15,4%	10,6%
LN5 (Med)	12,2%	8,1%

$$NPV = \sum_{j=t_p-t_r}^{j=t_n-t_r} \frac{-\Delta I_j + \Delta R_j - \Delta C_j + \Delta A_j}{(1+a)^j} + \frac{K_{t_n}}{(1+a)^{t_n-t_r}}$$

4 new HSR lines under construction (2011-2017)

		EAST	BPL	CNM	SEA	Total
	Total cost (million euro)	2000	3300	1800	7800	14900
	Length (km)	106	182	80	303	671
	Cost/km (million euro)	18,9	18,1	22,5	25,7	22,2
	Paid by RFF (million					
	euros)	520	1400	0	1000	2920
	Paid by central gvnmt					
	(million)	680	950	1200	1500	4330
	Paid by local gvnmt					
	(million)	640	950	600	1500	3690
	Paid by EU +					
	Luxembourg	160	0	0	0	160

- HSR Marseille-Nice
- Public subsidies = 15 billion euros
- Between 30 and 40 euros/pass/ day!

Conclusion

- HSR is a success in France from an economic point of view (ex-post CBA)
- But don't forget that the main winners of HSR are the users, SNCF, RFF and the rail industry
- There is no observed "wider economic effects"
- HSR is part of the standard of life of developed countries (demand for speed)
- HSR is the fruit of economic growth, but few effects of HSR on economic growth

Global mobility (data points : 1960-2000)

economic growth rates based on IP CC IS922a/e scenario

Correlation between accessibility and GDP/capita

Correlation between accessibility and GDP/capita

Correlation is not causality

Evolution of Jobs in French Regions. (1989 = 100)

Energy and Equity (Ivan Illich and J.P. Dupuy 1973)

- The more you increase speed, the more you reduce equity
- From the generalized cost to the generalized speed or « effective speed »

• Ef. Speed = 1 / (1/S) + (k/w)

Effective speed I. Illich, *Energy and equity*, 1973

- Average speed = harmonic speed = $n/[(1/V_1)+(1/V_2)]$
- Bicycle
- 1/ [(1/V)+(k/W)]
- 1/ [(1/14)+ (0,001/8) = 13,9
- Supersonic « Concord « in 2000
- 1/[(1/2000)+(1/6) = 6

- Subsonic aircraft
- 1/ [(1/600)+ (0,1/8) = 70 km/h
- HSR
- 1/ [(1/200)+ (0,15/8) = 40 km/h
- Heavily subsidized HSR
- 1/ [(1/200)+ (0,5/8) = 14,8 km/h