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ABSTRACT 
 
 

This paper begins by motivating the need for including “wider economic effects” when conducting 
transport infrastructure appraisal, followed by a discussion of various techniques to do so. The major 
focus is on studies from the cost function perspective that incorporate spillover benefits from public 
infrastructure capital, with a presentation of applications on highways, airports, and ports 
infrastructure stocks. The substantial differences between approaches focusing on “narrow” and 
“wider” impacts is evaluated, along with discussion of how application of the tools of spatial 
econometrics has facilitated estimation of models that capture wider economic benefits. 

1.  INTRODUCTION 

There are many studies since the 1980’s that attempt to quantify the effects of public 
infrastructure on the U.S. economy. There are a broad range of findings in these studies, including 
large positive, small positive, as well as negative effects. In recent years, research on the impacts of 
public infrastructure capital has started to incorporate assessments of the spillover benefits and costs 
across geographic boundaries. This revolution in the field comes at approximately the same time as 
growth in the area of spatial econometrics, which has facilitated the development of this strand in the 
infrastructure literature. 

Despite these recent advances, there is still more that could be done, some of which depends on 
data availability. Namely, applying the approaches of recent cost function studies to other industries 
besides the manufacturing sector would require detailed data on input prices at the industry level. 
Another aspect that is worthy of additional attention is modeling cross-boundary spillovers in a 
general equilibrium framework that accounts for both consumers and firms. 

In this paper, first I begin by introducing and motivating the need for incorporating measures of 
"wider" benefits of transport infrastructure in studies of the impacts of public infrastructure capital. In 
the context of this paper, “wider” benefits refer to the benefits beyond the geographic region in which 
the investment is undertaken. This motivation is followed by a description of several techniques used 
in the literature for measuring the "wider" (or spillover) benefits and how these measurement 
techniques differ from those for local benefits, for a variety of types of transportation infrastructure in 
general. These techniques include spatial spillovers (or lags) and spatial autocorrelation, both of which 
can be addressed through the empirical tools of spatial econometrics. Next I describe results of a 
variety of studies in the literature on highways, airports, ports, and various combinations of more than 
one type of transportation infrastructure. Finally, I elaborate on possible extensions and future work in 
this area, including research in progress and data sources that could be useful for addressing these 
issues.  
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2.  MOTIVATION 

An economic principles approach (supply and demand analysis) is instructive to motivate the 
problem of transportation infrastructure spillovers. Consider an average manufacturing firm in New 
York. The equilibrium amount of goods produced by this firm is given by the intersection of its supply 
and demand curves. What causes a shift in these curves? For the supply curve, holding all else 
constant, a decrease in the cost of “inputs” (such as wages, or the cost of private capital machinery or 
equipment) is one possibility. Another potential cause of a shift in supply is an improvement in 
technology. Finally, a “spillover” benefit (or a positive spillover) can shift the supply curve to the 
right.  

A positive spillover occurs when other agents’ actions confer benefits on an individual while the 
individual does not provide any compensation for these benefits. For example, if Connecticut 
improves its roads, the employees that travel to work from Connecticut to New York may have shorter 
commuting times, which would be expected to enhance productivity of workers in New York. 
Similarly, the cost of shipping goods out of New York can be expected to go down when Connecticut 
improves its roads, so this would be another way in which better roads in Connecticut would confer 
spillover benefits on New York firms. The key difference between the roads in Connecticut and those 
in New York are that the Connecticut roads may not be financed by the firms in New York. While a 
portion of highway infrastructure is paid for by the federal government, a major portion of road 
financing in a neighboring state is paid for (indirectly) by residents and firms in that neighboring state, 
opposed to individuals in other states who pass through on a regular basis.  

So when Connecticut expands its stock of public infrastructure, it causes the supply curve for 
firms in New York to shift to the right (see Figure 1). The new equilibrium level of production in New 
York is now higher than previously. In our analysis, the number of workers employed in New York is 
not changed, so output per worker, or productivity, now increases.  

Researchers implicitly use similar reasoning to explain the impacts of public infrastructure within 
a particular geographic region while ignoring the impacts of spillovers across boundaries. 
Accordingly, much of the empirical literature on public infrastructure is concerned with the question 
of: by how much is productivity enhanced when the stock of public infrastructure increases? In other 
words, by how much does the supply curve shift, and how large is the associated output change, when 
public infrastructure increases?  

The early empirical literature focused on national-level data using a production function approach 
of Aschauer (1989), and found a tremendous effect of infrastructure on productivity. Subsequent 
studies, such as Munnel (1990) assessed state-level data (Munnel), followed by studies that focused on 
the cost impacts of infrastructure (Morrison and Schwartz, 1996; Nadiri and Mameaunus, 1994). 
These subsequent studies found a range of infrastructure elasticities that were more reasonable than 
the initial Aschauer findings. Although the cost function study results are not directly comparable with 
the earlier production function studies, it is expected that they should be roughly in line with the 
production function results.  
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But most of these studies ignore an important aspect of public infrastructure. The network 
structure of many types of public infrastructure might imply that there are benefits to individuals 
beyond the state or locality where the infrastructure is located. On the other hand, better infrastructure 
in one location could assist firms in neighboring locations with drawing away the most productive 
resources, which could be detrimental to firms in the locality with the enhanced infrastructure. These 
network effects (both positive and negative) could have significant ramifications for the infrastructure 
elasticities worth examining in studies of state or county level infrastructure. A major focus of this 
paper is on the research, most of which developed in the late 1990’s and 2000’s, of the spatial 
spillover effects of public infrastructure capital. 

At this point, it is also worth noting that most infrastructure productivity studies are done in a 
partial equilibrium context. Haughwout (2002) is an exception. He estimates a general equilibrium 
model of production and consumption, with public infrastructure as a local public good for several 
large U.S. cities. He finds that public infrastructure is beneficial to firms and consumers, but a 
significant expansion of infrastructure capital would leave producers and consumers worse off. 
However, Haughwout’s model does not incorporate spatial spillovers across different cities due to 
public infrastructure, and estimating the net benefits of such a spillover model in a general equilibrium 
framework is worthy of attention.  

Unlike Haughwout’s study, most of the partial equilibrium studies in the literature ignore the 
impact of the demand curve on the equilibrium change in production from public infrastructure. In 
other words, the researchers really are concerned with the magnitude of the rightward shift of the 
supply curve from improvements in public infrastructure (Figure 2), opposed to the change in the 
equilibrium level of output resulting from the supply curve shift (Figure 1). This implies that the 
researchers assume a flat demand curve. Thus, there may be an overstatement of the impacts of public 
infrastructure in partial equilibrium studies, assuming the “true” private demand curve slopes 
downward. Another aspect deserving of greater attention in the infrastructure literature is the wider 
benefits to other sectors, such as the approach of Lakshmanan et. al. (2007). Studies that ignore these 
benefits may underestimate the impacts of public infrastructure investment. Overall, the net effect is 
unknown, but it would need to be determined empirically. Although describing the models behind 
such a general equilibrium approach are beyond the scope of the present paper, they are worthy of 
attention, and the reader is encouraged to see Lakshmanan et. al. (2007) for additional details.  

3.  GENERAL BACKGROUND 

There are at least a couple of ways researchers attempt to quantify the changes in productivity 
from greater infrastructure investments in neighboring jurisdictions. One of these approaches is the 
production function approach, which incorporates the stock of infrastructure in neighboring 
jurisdictions as a “shift” factor in the production function. The production function approach requires 
panel (cross-section and time series) data on the amount of output (Y), labor (L), other “variable” 
factors such as materials (M), the stock of fixed factors such as private capital stocks (K), and 
measures for public capital stocks for neighboring (G) and within-locality (I).  

The production function from the early studies on infrastructure that ignore inter-jurisdictional 
spillovers could be written (in vector notation) as the product of two functions, as follows: 
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(1) Y = h(I) f(K, L, M) + u , 

where u is a stochastic error term, which in general is implicitly assumed to have the desirable 
properties of zero mean, constant variance, and zero correlation across observations. Possible violation 
of the last of these assumptions can lead to inefficient estimates for the parameters, in which case their 
statistical significance may be understated. This potential problem is described in the spatial 
autocorrelation section below. The production function in (1) allows for infrastructure to shift the 
production function. 

The more recent production function studies that incorporate spatial spillovers across 
jurisdictions (such as Boarnet, 1998) use a more general production function, such as the following: 

(2) Y = h(I, G) f(K, L, M) + u 

In this specification, infrastructure in the own-jurisdiction, as well as in neighboring jurisdictions, 
can cause a shift in the production function.  

Another approach, often referred to as a cost function approach, relies on duality theory. Duality 
theory (Varian, 1992) tells us that if we assume firms minimize costs, then cost minimization is 
essentially the same problem as profit maximization (which is based on the production function). The 
cost function approach is appealing because it incorporates optimizing behavior by firms, and it 
estimates an implied reduced-form cost function. This approach requires information on factor prices 
(such as PLP, the wages of production workers; PLN , the wages of non-production workers; and PM , 
the price of materials inputs); the stock of fixed factors (such as private capital, K) and their associated 
prices (PK); output (Y); as well as separate measures of infrastructure stocks for within-jurisdiction (I) 
and in other jurisdictions (G). Specifically, the total cost (TC) function model that ignores inter-
jurisdictional infrastructure spillovers (similar to Morrison and Schwartz, 1996) can be written as 
follows:  

(3) TC = VC(Y, PLP, PLN , PM , K, I, t) + PK K + u, 

where VC(·) is the variable cost function, and t is a “time” counter representing the passage of time. 

Incorporating neighboring jurisdictions’ infrastructure (G), such as in Cohen and Morrison Paul 
(2004), yields  

(4) TC = VC(Y, PLP, PLN , PM , K, I, G, t) + PK K + u 

A useful rule (called Shepard’s Lemma) that is a special case of the envelope theorem (see 
Varian, 1992) states that the derivative of VC with respect to any of the input prices yields a demand 
function for that particular input. So as an example, for production labor (LP),  

(5) LP = ∂VC(·)/∂PLP  

With both the cost function and production function approaches, regression analysis is used to 
estimate parameters necessary to obtain elasticities of the infrastructure variables. For the cost function 
approach, an input demand function similar to (5) is derived for each of the variable factors, and a 
stochastic error term is appended to each of these equations. These input demands are estimated 
together with the variable cost function, using Seemingly Unrelated Regression (SUR) techniques.  
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In terms of assessing spillover benefits, with the production function approach the goal is to 
obtain estimates of the elasticity of output with respect to neighboring jurisdictions’ infrastructure: 

(6) εY,G  =  [∂Y/∂G][G/Y] 

For the cost function analysis, in assessing the wider benefits of infrastructure, one objective is to 
estimate the elasticity of variable costs with respect to neighbors’ infrastructure: 

(7) εVC,G  =  [∂VC/∂G][G/VC] 

When researchers compare results from production function studies with cost function studies, 
they tend to compare elasticities (6) and (7), respectively. However, the comparison is not completely 
valid since (6) shows the impact of neighbors’ infrastructure on output, while (7) shows the effect of 
neighbors’ infrastructure on variable costs. 

A similar way of writing (7) is as the “shadow” value of neighboring localities’ public 
infrastructure stocks (ZG), as it reveals how additional infrastructure in neighboring localities affects a 
particular locality’s variable costs:  

(8) ZG  =  [∂VC/∂G] 

For ZG <0, neighboring jurisdictions’ public infrastructure can be thought of creating “value” for 
firms in a particular jurisdiction, since variable costs fall as the size of the public infrastructure stock 
in neighboring jurisdictions increases. 

The cost function approach also enables an examination of other revealing elasticities that 
provide insight into the wider benefits of public infrastructure. For instance, the elasticity of labor 
demand with respect to neighboring jurisdictions’ infrastructure, which for production labor (LP) is 
(building on the result from equation (5), which is based on Shepard’s Lemma):  

(9) εLP,G  =  ∂LP /∂G = ∂(∂VC(·))/∂PLP∂G 

Also, the elasticity of the “shadow” value of the neighbors’ infrastructure with respect to the 
own-jurisdiction infrastructure is written as: 

(10) εG,I  = [∂ZG/∂I][I/ZG]  

This shadow value elasticity (10) is useful in determining whether infrastructure in neighboring 
jurisdictions is a substitute for or complement to an individual jurisdiction’s infrastructure stock. 
Namely, if greater infrastructure in a particular jurisdiction increases the value of neighboring 
jurisdictions’ infrastructure, then the two are complements. On the other hand, if greater infrastructure 
in a jurisdiction decreases the value of neighboring jurisdictions’ infrastructure, the two are 
substitutes. The outcome for this elasticity can have important implications for regional infrastructure 
coordination policies. 

Since it is clear that estimating these elasticities is an objective of the analysis, now a major 
question is how to construct the “neighbor” infrastructure stocks, test for and possibly adapt the model 
for spatial autocorrelation, and estimate the resulting equations. This is the focus of the next section on 
spatial econometrics. 
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4.  SPATIAL ECONOMETRICS 

Spatial Econometrics (Cliff and Ord, 1981, Anselin, 1981) has grown in popularity over the past 
25 years, and only recently has been applied in the area of infrastructure studies. There are two aspects 
of spatial econometrics, commonly referred to as spatial autocorrelation and spatial lags (Kelejian and 
Prucha, 1999).  

 

4.1. Spatial Autocorrelation 

Spatial autocorrelation occurs when one locality’s error term in the regression depends on 
“neighboring” localities’ shocks or innovations, instead of merely being normally distributed with zero 
mean, constant variance, and zero covariances over time and space. Spatial autocorrelation implies 
interdependencies among different localities, and in general researchers can accommodate for spatial 
autocorrelation after conducting a procedure that generates an estimate of the magnitude of the 
autocorrelation. The word “neighboring” is in quotations because the word does not necessarily imply 
that the neighbor is at a contiguous location. That is, it could imply that localities are similar (or 
dissimilar) in other ways, such as average incomes of residents, volume of trade between individual 
locations, or other demographic characteristics.  

Mathematically, spatial autocorrelation is represented in the following form: 

(11) ui = λ Σj wi,j uj + γi 

or, in vector notation, 

(11’) u = λ Wu + γ 

In equation (11), ui is the error term for locality i, λ is the spatial autocorrelation coefficient, wi,j 
is the weight that locality j’s error term has on locality i’s error term (described as W in matrix 
notation), and γi is locality i’s error term with the “desirable” properties (described below). Depending 
on the estimation technique for λ, researchers impose different assumptions on the distribution of γi. 
Namely, the Generalized Moments (GM) approach of Kelejian and Prucha (1999) assumes that γi is 
independently, identically distributed with zero mean, constant variance, and zero covariances across 
observations. The other commonly used approach, known as maximum likelihood (ML) estimation 
(Anselin, 1981), assumes normality of the γi, along with the same assumptions of zero mean, constant 
variance, and zero covariances. 

Before the estimation can be implemented, researchers must choose the specification for the 
spatial weights, wi,j . One common approach is contiguity weights, where all jurisdictions that are 
contiguous geographic neighbors to a particular jurisdiction are weighted equally. In other words, 
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(12) wi,j  = 1/c  if j is a contiguous neighbor to i 

         = 0 otherwise, 

where c is the total number of i’s contiguous geographic neighbors. 

Other approaches, such as that of Boarnet (1998), specify more complicated spatial weight 
structures. One common example is the following: 

(13) wi,j = [1/|Di – Dj |] / [ 1/ Σj |Di – Dj | ] 

In this weights specification, Di and Dj can represent demographic variables, such as population, 
per capita income, or others (Boarnet, 1998). Intuitively, this gives greater weight to jurisdictions that 
are “similar” to each other, and less weight to jurisdictions that are “dissimilar”. Since two 
jurisdictions (i and j) that are similar based on some demographic information will have Di and Dj 
relatively close together, the inverse of the absolute value of their difference will be a large number, so 
jurisdiction j will have greater weight on jurisdiction i. The term involving the summation in the 
denominator is a normalization to ensure that Σj wi,j =1. 

The next step after specification of the spatial weights is the estimation. Often, researchers 
estimate the production or cost function (along with the associated input demand equations), and 
perform a test for spatial autocorrelation (such as the Moran I test). Assuming the null hypothesis of 
no spatial autocorrelation is rejected, the next step is to determine the appropriate estimation technique 
for λ. One approach is to test whether the fitted residuals are normally distributed, using a test for 
normality (such as the Jarque-Bera test). If normality is rejected, the GM approach is followed to 
appropriately estimate λ, otherwise the ML estimation approach is used. Finally, once an estimate of λ 
is obtained, researchers use it to perform a spatial Cochrane-Orcutt transformation (analogous to a 
time-series Cochrane-Orcutt transformation) before re-estimating the transformed system.  

Namely, to demonstrate this process consider the production function Y = h(I,G)f(K,L), which 
we rewrite as: 

(14) Y = Xβ  + u , 

where X represents a matrix of the explanatory variables (I,G,K,L), β is a vector of parameters to be 
estimated (and subsequently used to obtain the infrastructure elasticities), and u is as represented in the 
spatial autocorrelation error process described in (11’) above. Substituting equation (11’) into equation 
(14) yields: 

(15) Y = Xβ  + λ Wu + γ 

Also, since we can rewrite the production function equation as: 

(14’) u = Y – Xβ , 

then multiplying through both sides by �W yields 

(14’’) λ Wu = λ WY – λ WXβ , 

and substituting this result into the equation (15 ) above,  
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(15’) Y = Xβ  + λ WY – λ WXβ + γ 

and rewriting: 

(15’’) Y - λ WY = Xβ  – λ WXβ + γ 

or 

(16) Y* = (X*) β  + γ 

where  Y* ≡ Y [IN  – λ W], 
 
 X* ≡ X [IN  – λ W] 

and IN is an N by N identity matrix (where N is the number of observations in the sample). 

After obtaining parameter estimates for λ and substituting them into equation (16) above, the 
resulting estimation equation has an error term (γ) that does not exhibit spatial autocorrelation, and 
thus yields efficient parameter estimates for the elasticities of output or costs with respect to 
infrastructure (either in the own or neighboring jurisdictions). 

There are a number or potential reasons why a model might be expected to exhibit spatial 
autocorrelation. These include possible omitted variables that vary spatially; decisions in one location 
that are made for entities in other locations; and/or common shocks that spill over across geographic 
boundaries. An example of the latter is the weather and its impact on firms’ costs or production 
process. A weather “shock” (for instance, either a storm or a heat wave) hitting some states and 
impacting production or costs can spill over to an adjacent state, and thus there can be some degree of 
persistence over geographic space that may lead to spatial autocorrelation.  

Ignoring spatial autocorrelation can lead to parameter estimates with higher standard errors than 
if spatial autocorrelation had not been present. These higher standard errors can translate into t-
statistics that are smaller than they should be. In other words, ignoring significant spatial 
autocorrelation can impact hypothesis testing, as researchers might fail to reject a null hypothesis that 
is actually a true hypothesis. In the context of infrastructure, ignoring spatial autocorrelation can lead a 
researcher to erroneously accept a null hypothesis that the infrastructure elasticity is equal to zero. 

One of the first known infrastructure studies that addressed spatial autocorrelation is Kelejian and 
Robinson (1997). They estimate a Cobb-Douglas production function and incorporate a spatial 
autocorrelation adjustment, and they are careful to try many other specifications as well. They find that 
there can be a wide range of estimates on the infrastructure elasticities, depending on the econometric 
specification employed by the researchers.  

Two subsequent studies find less convincing evidence of spatial autocorrelation. Holtz-Eakin and 
Schwartz (1995) test for spatial autocorrelation but find no evidence of its presence in their model. 
Boarnet (1998) finds no evidence that accommodation of spatial autocorrelation affects the sign and 
significance of the infrastructure elasticity estimates in his model.  

The form of spatial autocorrelation in equation (11) is analogous to a first-order time series 
autoregressive process. Just as there are much more complicated time series processes in the 
econometrics literature, there are now some more complicated spatial processes addressed in the 
infrastructure literature to allow for more general forms of spatial autocorrelation. Cohen and 
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Morrison Paul (2007) address the problem of higher order spatial autocorrelation in the context of 
assessing the impacts of transportation infrastructure on manufacturing costs. Namely, they consider 
more general forms for the spatial process, such as: 

(17) ui =Σm λmΣj wm,i,j uj + γi 

where m represents the “order” of the neighbor. Equation (17) is similar to but more general than 
equation (11), since here wm,i,j stands for the weight that state j has on state i in neighbor band m. Also, 
λm is the spatial autocorrelation parameter for the impact of the weighted average of errors in neighbor 
band m on state i’s error term. For instance, at the state level and using contiguity weight matrices, 
New York, Connecticut, Rhode Island, New Hampshire, and Vermont would be first-order neighbors 
(m=1) to Massachusetts; New Jersey, Maine, and Pennsylvania would be second-order neighbors 
(m=2) to Massachusetts, etc. Such an error structure allows for more complex interactions among error 
terms for states (or other geographic units), so that in the previous example, shocks hitting New 
Jersey, Maine, and Pennsylvania might spill over to Massachusetts, whereas they would not with the 
first order contiguity neighbor matrix. Also, since each order neighbor has a separate spatial 
autocorrelation coefficient, it is possible in models of higher order spatial autocorrelation that the 
shocks hitting Massachusetts’ second order neighbors have different impacts on the state than the 
shocks that hit its first-order neighbors. This error structure can be preferable to an approach where all 
other units are neighbors in varying degrees but with the same spatial autocorrelation coefficient. With 
higher order spatial autocorrelation, one can test whether the autocorrelation impact dissipates (or even 
dies out) beyond a certain range, instead of merely imposing a cutoff distance for neighbors to be 
included in the weighted average.  

In determining the appropriate number of neighbors (m), Cohen and Morrison Paul (2007) apply 
a variation of the Kelejian and Robinson (1992) test for spatial autocorrelation as follows. First, Cohen 
and Morrison Paul test for first order spatial autocorrelation. When they find evidence of first order 
spatial autocorrelation, they proceed to test for second order, otherwise they stop. If they find second 
order spatial autocorrelation, they proceed to test for third order, otherwise they stop. They perform 
these tests on each of the estimation equations (the variable cost and the 3 input demands) separately. 
They find evidence of first order spatial autocorrelation in the non-production labor demand equation; 
second order spatial autocorrelation in the materials demand and variable cost equations; and third 
order spatial autocorrelation in the production labor demand equation. Accordingly, they estimate the 
spatial autocorrelation coefficients for each equation using the Kelejian and Prucha (2004) 
Generalized Moments techniques for systems of equations, then use these estimates to perform a 
spatial Cochrane-Orcutt transformation on each equation, before estimating the transformed system to 
obtain consistent parameter estimates.  

Cohen and Morrison Paul (2007) find that the magnitude of the spatial autocorrelation 
coefficients for each equation decreases as the order of the neighbors increases. In other words, the 
impact of a “band” of neighbors’ error terms on a particular state’s error term is higher for states that 
are closer neighbors to a particular state, and it dissipates for bands of states that are more distant 
neighbors. 
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4.2. Spatial Lag 

The other form of spatial spillovers that can be assessed with spatial econometrics is known as a 
spatial lag. A spatial lag (or spatial dependence) occurs when the “neighbors” of a particular 
geographic unit’s variable(s) are included as explanatory variables in a regression. These spatially 
lagged variables can be of the dependent variable, as in Boarnet (1998), who includes a spatial lag of 
output. Such a spatial lag is interpreted as the weighted average of other jurisdictions’ dependent 
variable. It is also common for researchers to include a spatial lag of some variable(s) other than the 
dependent variable. Examples of such spatial lags described below in more detail include Cohen and 
Morrison Paul (2003a, 2004), who include the weighted average of other states’ airports, and 
highways, respectively.  

A production function regression equation with a spatial lag can be written as follows: 

(18) Y = ρWY +  Xβ  + u , 

where ρ and β are parameters to be estimated. In this equation, WY is the spatial lag, and it represents 
the weighted average of other jurisdictions’ endogenous variable (which is output in the case of the 
production function). In Boarnet (1998), the endogenous variable is output. Since we know that Y is 
correlated with the error term u, it follows that WY is also correlated with u. Thus, WY is also an 
endogenous variable. In this case, ordinary least squares (OLS) is not the appropriate estimation 
technique. Instead, two-stage least squares (2SLS), or instrumental variables (IV) should be used to 
estimate equation (18). It can be shown (Kelejian and Prucha, 1998) that X is the appropriate 
instrument for itself, and WX is an instrument for WY. It is also possible, but not necessary, to include 
additional instruments for WY, such as WWX, WWWX, etc. 

In situations where there is a spatially lagged dependent variable and spatial autocorrelation in the 
same model (that is, when equation (18) has the error structure described in equation (11’)), the 
procedure for estimating λ described above is somewhat different. The first step is to estimate 
equation (18) by 2SLS, using X and WX as instruments. The second step is to retrieve the fitted values 
of the error terms u, and use them in either the GM or ML procedure described above to generate an 
estimate for λ. The final steps are to transform (18) with a spatial Cochrane-Orcutt transformation, 
plug in the estimate for λ, and estimate the transformed equation(s) by 2SLS, using X and WX as 
instruments for X and WY, respectively. This process yields efficient parameter estimates for β and ρ, 
and in turn, estimates for the infrastructure elasticities. 

It is also possible to model spatial dependence by including spatial lags of other exogenous 
variables in the model. One example is the weighted average of other jurisdictions’ public 
infrastructure stocks. In such a situation, the production function is written as: 

(19) Y = Xβ + WZδ + u , 

where Z is some subset of the variables included in X (such as the stock of public infrastructure), and 
β and δ are parameters to be estimated. It is also possible, but not necessary, to add a spatially lagged 
dependent variable in the model. Once the estimates of β and δ are obtained, either through OLS, the 
spatial autocorrelation adjusted OLS procedure, or 2SLS (if there is a spatially lagged dependent 
variable), it is possible to generate insights on the wider benefits of infrastructure. By calculating the 
elasticity of output with respect to neighboring jurisdictions’ infrastructure (εY,G), or the elasticity of 
variable costs with respect to neighbors’ infrastructure (εVC,G), it is possible to assess these wider 
benefits. Also, if spatial autocorrelation is found to be present in the earlier estimation stages, that can 
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provide additional information about wider benefits by shedding light on the innovations that spill 
over among “neighboring” jurisdictions.  

5.  APPLICATIONS 

Recent applications of spatial lags and spatial autocorrelation in U.S. public infrastructure capital 
studies (both production function and cost function) have been done at the state and county levels, and 
have focused on airports, ports, highways and roads. Boarnet (1998) includes a spatial lag of the 
public infrastructure variables (roads and highways). He conducts an analysis of California counties 
with a Cobb-Douglas production function, allowing the infrastructure and neighboring county 
infrastructure stocks to be “free” variables that would shift the production function. Boarnet also tries 
a variety of different spatial weights matrices, and he finds significantly negative spatial lags with the 
weights for counties with more similar population densities (εY,G = -.307), as well as those with similar 
levels of per-capital income (εY,G= -.806). The magnitudes of these effects seem quite large, as the 
impacts of own-state infrastructure εY,I are 0.268 and 0.300 for the population and income weights, 
respectively.  

Boarnet’s results represent evidence of leeching behavior. Namely, improved infrastructure in 
neighboring counties would enable firms in those neighboring counties to draw away productive 
resources from a nearby county, leaving less productive workers in the nearby county. Thus, he finds 
some evidence showing that improvements in infrastructure in neighboring counties lead to a decrease 
in output in a particular county, assuming that workers are mobile. 

Other subsequent state-level infrastructure studies by Cohen and Morrison Paul (2003a, 2004) 
find evidence of positive spillovers across states. The former paper focuses on airports, while the latter 
on highways. These studies incorporate spatial autocorrelation adjustments as well. They estimate cost 
functions and input demand equations for the U.S. manufacturing sector, so any benefits that they find 
accrue only to this particular sector. 

Cohen and Morrison Paul (2003a) is motivated by the hub and spoke structure of the U.S. air 
transportation network. This system consists of airlines transporting passengers and freight from spoke 
airports to hub airports, followed by the passengers and cargo deplaning at the hubs and boarding 
other flights that transport them to their final destinations. With such a system, a delay at any 
particular node in the network can have system-wide effects, since passengers and cargo waiting to be 
transported by connecting flights at other nodes can be delayed as well. Improving infrastructure at a 
particular airport may reduce congestion throughout the entire system, leading to a decrease in travel 
time for business travelers and for cargo throughout the country. This lower travel time can translate 
into a decrease in firms’ costs and enhance worker productivity. 

A distinctive characteristic of the Cohen and Paul (2003a) analysis is that external benefits are 
different for airports than for highways or roads. In order for an airport to generate any benefits at all, 
there must be another node somewhere in the system for departing planes to land. Highways or roads 
infrastructure, on the other hand, can provide benefits with as little as several miles length within one 
city. Thus, one might expect the out-of-state-benefits for airports to be relatively large compared with 
those of highways, since better infrastructure at congested airports in other states should have a similar 
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impact on travel savings (and in turn, costs) as if the improvements had been made at a congested 
departure airport in the firm’s state.  

Cohen and Morrison Paul (2003a) estimate a state-level variable cost function (which is the VC(·) 
expression in equation (4) above) and input demand equations similar to equation (5), where I 
represents within-state airport infrastructure stocks, and G represents a weighted average of airport 
infrastructure stocks in other states. They use Seemingly Unrelated Regressions (SUR) to estimate the 
system of equations, and they also find that applying a spatial autocorrelation adjustment to this 
system based on parameter estimates from the Kelejian and Prucha (2004) Generalized Moments 
approach does not substantively affect their results. They obtain the data for I by applying the 
perpetual inventory method to state-level capital spending data on air transportation, for the years 
1982-1996. They obtain an estimate of the average service life of airports of 25 years, which they 
multiply by the average air transportation capital spending from 1977 to 1981, to obtain a base-year 
airports capital stock. Their depreciation rate is obtained by the inverse of the estimated average 
service life, and their investment deflator is from the 2000 Economic Report of the President.  

Their G variable is based on the extent of the interaction between a particular state and other 
states. This interaction is measured by the number of person-trips by air between individual states, 
from data in the 1995 American Travel Survey (Bureau of Transportation Statistics). So, as an 
example, a destination-state (j) with fewer person trips (ai,j) between it and an origin state (i) has a 
lower weight on the origin state than another destination state with a larger number of person trips 
between it and the origin state. They define the weight that a particular destination state has on an 
individual state i as: 

(20) wi,j =  ai,j/Σj(ai,j) 

with the term in the denominator ensuring that the wi,j sum to 1 (and wi,j represents the (i,j) element of 
the spatial weight matrix, W). Equation (20) represents the spatial weights that they use to perform a 
spatial autocorrelation adjustment in the variable cost and each of the input demand equations.  

They also construct Rj , the ratios of Gross State Product (GSP) in state i to GSP in state j in a 
given year. Then, they define the average “neighbors’” airport infrastructure, Gi , in any given year as  

(21) Gi ≡ Σj wi,j Ij · Rj , 

where Ij is the airport infrastructure stock in state j in a given year. The intuition behind Rj is that one 
might expect a disproportionately large number of flights in larger states (such as Texas) to enter into 
G for smaller states (such as Rhode Island). Multiplying each “neighbor” state’s infrastructure stock 
(Ij) by the inverse of its GSP times state i’s GSP essentially eliminates the size effect arising due to the 
large neighbor states. 

Cohen and Morrison Paul note that many large hub airports in the U.S. are facing more 
congestion during the period of their sample than airports that are not large hubs. Thus, it might be 
expected that the cost elasticities with respect to own-state and other state airports are not the same for 
states with at least one hub airports opposed to states with no hub airports. So they present two sets of 
elasticity results, for states with hub airports and for states with no hub airports. 
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First, for states with large hubs, the εVC,I and εVC,G elasticities are very similar and significant, 
with values of -0.113 and -0.116, respectively. This implies that better airports in other hub states are 
just as effective as airports in the origin state at reducing costs for manufacturing firms in that 
particular state. As discussed above, this supports the notion that unlike highways, airport 
improvements at origin and destination points should provide approximately the same level of cost-
reduction benefits. In other words, for states with large hubs, an out-of-state airport can be just as 
important as the origin airport because two points are necessary to complete a trip.  

For the input demand elasticities with respect to G for states with large hub airports, both 
production and non-production labor demand are negative and significant. These imply that increased 
airport infrastructure stocks in other states leads to lower demand for both types of labor in an 
individual state with large hub airports. With these lower numbers of workers, increased marginal 
product of labor is implied as a result of the higher levels of G. The results are similar in direction for 
materials inputs, while the magnitude of the effect of G on materials demand is smaller than the 
impacts for both types of labor. 

The results are somewhat different for states with no major hubs. Namely, while εVC,G and εVC,I 
are negative and significant, εVC,G is much larger in magnitude. The authors explain this difference by 
the fact that G includes states with large hubs, many of which are congested, while I represents airport 
infrastructure stocks for non-hub origin states, which in general are not as congested. Thus, the cost 
savings from expanding airports in other states is much larger in magnitude than the cost savings from 
larger airports in the origin states. Furthermore, the negative and significant shadow value elasticities 
εI,G and εG,I imply that G and I are substitutes, as increases in I imply lower ZG  (and vice-versa for G 
and ZI). 

Cohen and Morrison Paul (2004) focus on highway interdependencies across state borders. They 
note that the magnitudes and directions of such network effects have been elusive in previous 
infrastructure studies. The highways problem is motivated by the possibility of travel time savings for 
firms’ workers in a particular state who travel through neighboring states on their way to and from 
work. Also, firms generate cost-saving benefits from shipment of materials through neighboring states 
with improved infrastructure stocks.  

The authors estimate a variable cost function for the U.S. manufacturing industry similar to that 
of Cohen and Morrison Paul (2003a), except here I represents within-state highways infrastructure 
(obtained from Paul et. al., 2001, who apply the perpetual inventory method to state-level investment 
data); and G is the weighted average of neighbors’ highway infrastructure. They calculate the spatial 
weights wi,j as in equation (20) above, where here ai,j is the average value of goods shipped from state i 
to state j, and j consists of states that are contiguous neighbors of state i. After the wi,j are determined, 
G is calculated as in equation (21).  

Another element of the Cohen and Morrison Paul (2004) estimation system is that they allow for 
first order spatial autocorrelation in the cost function and input demand equations, by appending an 
error structure to each estimation equation similar to (11). They estimate a Generalized Leontief 
variable cost function, as well as input demand functions based on (5) for production labor, non-
production labor, and materials inputs. Their annual data are for the manufacturing industry at the state 
level, covering the period 1982-1996. They find that the parameters for the terms involving G are 
jointly significant, which justifies their inclusion of spatial spillover effects in the variable cost 
function model. They also reject the hypothesis that the I and G parameters together are jointly zero. 
They find that the mean of the elasticity εVC,I = -0.230 and is statistically significant, while the mean of 
εVC,G = -0.011 and is statistically insignificant.  The inconsistency between the joint significance of the  
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terms involving G in the regressions and the insignificance of the mean εVC,G elasticity may be 
explained by the difference in how the standard errors are calculated for εVC,G . Namely, the latter are 
based on the mean of the data over the entire sample. 

The authors also find that when spatial effects (both G and spatial autocorrelation) are not 
recognized, the εVC,I is only about -0.15, so they conclude that incorporating G and spatial 
autocorrelation increases the absolute value of the magnitude of the own-state infrastructure elasticity. 
Furthermore, the combined effect of G and I is approximately -0.24, which is about 50% larger in 
magnitude than when both G and spatial autocorrelation are ignored. The upshot is that accounting for 
these spatial effects appears to have a substantial effect on estimates of the cost-saving impacts of 
public infrastructure. 

Another finding is that several of the inputs (namely, private capital, materials, and non-
production labor) are substitutes with I, while production labor is a complement with I. The finding 
that private capital and I are substitutes is consistent with other findings in the public infrastructure 
literature. 

There are somewhat different relationships between G and the inputs. Namely, capital, non-
production labor and production labor are substitutes with G, while materials and G are complements. 
Cohen and Morrison Paul (2004) note that the substitutability between G and both types of labor is 
similar to the Boarnet (1998) findings. 

Interestingly, Cohen and Morrison Paul (2004) note differences in the regional elasticities 
involving G. They find that εVC,G is slightly positive for the Pacific states, implying that within-state 
infrastructure is more important than inter-state infrastructure improvements for those states. This may 
be partly because California, a relatively large state, is included in the Pacific region. On the other 
hand, εVC,G is largest for states in the Mountain and West North Central regions. The authors note that 
since these states have relatively small populations, interstate highways may be more important for 
manufacturing firms in those states. 

Cohen and Monaco (2007) examine the impacts of ports on manufacturing costs at the state level. 
They look at the within-state port effects (through I) and the inter-state port effects (through G) based 
on estimating a Generalized Leontief variable cost function, with I and G as shift factors. They 
construct ports capital stocks using the perpetual inventory method on state-level ports investment 
data. The authors also incorporate highway infrastructure variables to test for complementarity or 
substitutability between ports and highways. They test for and allow for spatial autocorrelation in their 
analysis as well. The spatial autocorrelation parameters are positive and significant, implying that a 
shock to states neighboring a particular state spill over to the particular state.  

Regarding their elasticity estimates, Cohen and Monaco find that increases in ports infrastructure 
within a particular state decrease variable costs, with a variable cost elasticity of about -0.04 and 
statistically significant. The results for the variable cost elasticity with respect to neighboring states’ 
ports infrastructure are quite different. Namely, greater levels of ports infrastructure in neighboring 
states leads to a rise in variable costs in a particular state. The variable cost elasticity with respect to 
neighboring states’ ports is 0.129. The authors argue that these inter-state findings are consistent with 
Boarnet (1998), and imply that improved ports in nearby states may draw away the most productive 
workers from a particular state, leading to higher manufacturing costs in that particular state. In other 
words, the positive and significant infrastructure elasticity is evidence of external diseconomies of 
scale. From the perspective of manufacturing firms in a particular state, neighboring states may have 
too much ports infrastructure during the sample period, and lower ports infrastructure in neighboring 
states may be expected to lower manufacturing costs in a particular state. 
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Cohen and Monaco (2007) also find that the elasticity of the shadow value of neighbors’ ports 
with respect to the own state’s ports infrastructure is negative and significant. This result implies that 
states with decreasing ports infrastructure face larger external diseconomies of scale resulting from 
changes in ports infrastructure in neighboring states. On the other hand, they find that the elasticity of 
the own state’s ports shadow value with respect to the stock of ports in neighboring states is 
insignificant, implying that additional ports infrastructure in neighboring states has no significant 
impact on the shadow value of ports infrastructure in a particular state. 

Based on the elasticities relating ports and highways, the authors find no significant relationship 
between the shadow value of ports (highways) and additional highways (ports). The ports shadow 
value elasticities with respect to both types of labor (production and non-production labor) are 
positive. In other words, the cost-reduction potential (or shadow value) of ports increases with more 
workers, so there appear to be some complementarities between workers and ports. Finally, the 
shadow value of ports increases over time, after controlling for all factor prices and other shift factors, 
as is seen by the sign and significance of the elasticity of the ports shadow value with respect to the 
time counter (t). 

The functional forms for the cost function studies discussed so far all are Generalized Leontief. 
Also, the focus of most previous spatial cost function studies is on the impacts of various types of 
infrastructure on the U.S. manufacturing sector. Another recent study by Moreno et. al. (2004) 
assesses spillovers for 15 Spanish regions over the years 1980 to 1991, for 12 manufacturing 
industries. They estimate a translog variable cost function, for two separate classes of models. They 
classify the first type of model as the “sectoral” case, where the weighted average of other industries’ 
and/or geographic regions’ output are included as external inputs. Their sectoral case is similar in 
spirit to the approach of Morrison and Siegel (1999), who incorporate external shift variables in the 
cost function for other industries’ output. Moreno et. al.’s other group of models is the “regional” case, 
where they add measures of public capital for neighboring regions. They include measures of public 
capital (I) within a particular region for each industry, by apportioning the aggregate infrastructure 
stock to the individual industries based on the output share of each manufacturing industry in total 
manufacturing output. For the regional case, the authors have a somewhat different specification of G 
than the spatial lag approach of the other cost function studies described above. Namely, they denote 
G as W times ln(I), where ln(I) represents the natural logarithm of I, and W is a contiguity matrix 
based on geographic neighboring Spanish regions. Then, total public capital (which here will be called 
“T”) is assumed to be a geometric mean of the own-region public capital (I) and the neighbors’ public 
capital (G): 

(22) T ≡ Iθ G1- θ, 
 
where θ is a parameter between 0 and 1 to be estimated empirically together with the rest of the cost 
function. They argue that one advantage of such a specification for public capital is that it allows for 
complementarities between I and G. This specification also averts the need to add several additional 
interaction terms for both I and G, while instead interaction terms for only one infrastructure variable 
(T) needs to be added to the basic cost function. They argue that inclusion of minimal interaction 
terms mitigates potential multicolinearity problems. A disadvantage of this approach, however, is that 
now with the addition of T the model must be estimated with nonlinear regression techniques.  

For their regional case, Moreno et. al. build up their model by starting with a translog variable 
cost function model containing input prices for labor and intermediate materials, an output measure, 
and a fixed factor for capital. They also perform 3 tests for spatial autocorrelation, and find significant 
evidence of spatial autocorrelation in this basic model with one of the 3 tests. Next, they add public 
capital (I), and find that all of the parameters that are involved with terms for I are jointly significant. 
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Once again, they find evidence of spatial autocorrelation with one of their 3 tests for this specification. 
They find that on average over all Spanish regions, εVC,I =-0.034. Their estimates for input demand 
elasticities imply that labor and infrastructure are complementary, while infrastructure and 
intermediate materials are substitutes. Finally, when they add cross-region externalities in the form of 
G and the weighted average of neighboring regions’ output, they find no evidence of spatial 
autocorrelation, but they find that θ = 0.58. This value for θ (and the associated value for (1-θ)) 
implies that both G and I are important determinants of variable costs, and supports the notion that 
transportation networks are present. But the elasticity of variable costs with respect to the composite 
infrastructure measure is now positive, which leads to a conclusion that these Spanish regions may 
have too much infrastructure during the 1980’s. Also, the elasticity of labor with respect to the 
composite infrastructure measure T is now negative, implying that workers and infrastructure are now 
substitutes. Furthermore, the elasticity of intermediate materials with respect to infrastructure also 
switches signs, with an interpretation that these two inputs are now complements. The authors also 
note, however, that the spatial weight matrix specification may be driving their results with this 
particular estimation approach, but they do not report results of testing with alternative weight 
matrices. 

In the sectoral case, they assume that θ = 1, so that they do not incorporate public capital 
spillovers across regions. First, they find that εVC,I = 0.305, implying once again that there is an excess 
of public infrastructure capital during the 1980’s in Spain. They also find strong evidence of spatial 
autocorrelation across sectors (which they call “sectoral autocorrelation”) based on all 3 tests. Finally, 
in a separate estimation procedure they add the weighted average of neighboring regions’ output as a 
fixed factor. This additional fixed factor, together with the inclusion of public capital (I), completely 
eliminates the evidence of significant “sectoral autocorrelation”. They also find that the average 
εVC,I = -0.341, implying that public infrastructure capital in Spain confers cost-saving benefits on 
manufacturing firms in that country. In both of the estimation procedures that incorporate public 
capital for the sectoral case, they find that labor and public infrastructure capital are complements, 
while intermediate materials and public capital are substitutes. 

6.  CONCLUSIONS AND FUTURE WORK 

Recent advances in spatial econometrics have facilitated analysis of the wider benefits of public 
infrastructure. In particular, researchers over the past decade have assessed both the impacts of spatial 
autocorrelation and spatial lags on estimates of the benefits of public infrastructure capital. Various 
modes of transportation infrastructure have been studied, including highways, air, and ports. Coverage 
has focused on U.S. counties, states, as well as regions of Spain. Studies have been conducted using 
both production function and cost function approaches, and have led to a broad range of results. 
Namely, some studies have found that additional infrastructure capital leads to greater output or lower 
costs, while others have found the opposite. Despite this lack of consensus on infrastructure’s impacts, 
it is clear that incorporating measures of “wider benefits” has enhanced the precision of the effects of 
infrastructure relative to the state of the art in the early 1990’s. Thus, the innovations in the tool set of 
spatial econometrics have contributed to understanding in this field. However, there is still more that 
can be done in future research to improve the accuracy of impact measures for public infrastructure.  
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One area of potential further work would be to utilize firm-level manufacturing data to estimate 
the elasticity of variable costs with respect to public infrastructure. Such a disaggregate analysis would 
allow for greater heterogeneity among the individual agents, which may generate different results for 
the infrastructure elasticities. Such data are housed at the U.S. Census Bureau Research Data Centers 
(RDC’s). There are a number of obstacles to overcome before obtaining these data, but the potential 
richness of the data may be worth the effort needed to gain access to the RDC’s resources. One 
potential benefit of the firm-level analysis is that once elasticities are estimated, one could impute for 
each firm a dollar value of the estimated cost-reduction resulting from additional infrastructure. Such 
an approach could lead to innovative alternative approaches for financing infrastructure improvements 
by charging firms based on their expected (or realized) benefits from infrastructure improvements.  

Along with the advances in the area of spatial econometrics over the last 15 years, Geographic 
Information Systems software has grown in popularity and usage in the economics profession. While 
its usage in other areas within the economics profession has become common, such as in hedonic 
housing price studies, there is much that could be done with GIS software in infrastructure studies. For 
example, researchers could utilize GIS more heavily so as to generate more sophisticated spatial 
weights in assessing the spillover benefits from “neighboring” jurisdictions. Constructing a greater 
variety of spatial weights and estimating either the cost function or production function for several 
different weights specifications can provide a robustness check for the spatial modeling. 

Related to the notion of checking robustness of using different spatial weights matrices is 
incorporating alternative variations of the measure of other localities’ infrastructure stocks. Namely, 
many studies calculate G for a particular locality as the weighted average of other localities’ 
infrastructure, and G enters as a separate shift factor in the analysis. One exception is Moreno et. al. 
(2004), who instead use I and G to derive a net infrastructure measure, which we call T in equation 
(22) above. As noted by Moreno et. al., using T instead of separate terms for both I and G reduces the 
number of interaction terms (and in turn, the number of parameters to estimate with the more 
sophisticated functional forms), although it introduces nonlinearities that preclude classical linear 
estimation techniques. But it would be a worthwhile exercise to compute such a composite 
infrastructure measure and check the robustness of results. One potential drawback, however, is that 
such a structure imposes additional interdependencies between G and I instead of testing for such 
interrelationships empirically. 

While there have been studies of public infrastructure impacts on manufacturing costs involving 
multi-modal transportation, such as Cohen and Morrison Paul (2007) for airports and highways, and 
Cohen and Monaco (2007) for ports and highways, a large scale intermodal study would generate new 
insights on the complementarity and/or substitutability between different types of infrastructure. A 
more detailed analysis of spillovers from intermodal transportation at the disaggregate (county) level, 
incorporating ports, rail, air, and highways would integrate the more complex structure of 
transportation networks into the current literature. 

Another possible extension would be to examine the impacts of infrastructure on other sectors 
besides manufacturing. Cohen and Monaco have work in progress that explores the impacts of ports 
on the textiles and wholesale goods sectors, at the California county level. Studies for additional 
industries and locations that examine other types of infrastructure as well could be insightful. 

In addition to looking at the benefits across sectors, another possibility would be to examine the 
general equilibrium impacts of G along the lines of Haughwout (2002). Namely, this would consist of 
a model with consumers making consumption choices while minimizing their total expenditures, with 
infrastructure as an exogenous shift factor. Additionally, the model would have a production side, with 
firms choosing inputs to minimize production costs, and infrastructure would also enter the cost 
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function. Here, “infrastructure” could consist of both I and G, so one might assess the general 
equilibrium impacts on welfare from infrastructure spillovers, both across jurisdictions as well as 
within a particular jurisdiction.  

Another more macro approach would be to look at benefits across countries, such as individual 
European countries that are highly interdependent, along with benefits across regions that are within 
countries. Cohen and Morrison Paul (2003b) assess production-related spillovers across EU countries, 
but they do not incorporate infrastructure. Yet another aspect would be having different layers of G 
that start at micro level, and then aggregate up. This approach would avoid missing spillovers that 
accrue within individual countries when doing a cross-country spillover analysis. While the spillover 
public capital stocks (G) would likely be larger here, this does not necessarily imply that the benefits 
would be greater as well. The sign of the net benefits would depend on the sign of the elasticities with 
respect to infrastructure based on the econometric estimation of the model.  

Finally, rolling up many of these ideas and examining them together would be a complex 
exercise. But it would also be an excellent springboard for introducing CGE models, as presented by 
Lakshmanan, et. al. (2007). Needless to say, there is much more work that still can be done in 
assessing the wider benefits of public infrastructure capital. 
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