

Donkey Republic Sustainability Framework

Presentation by Erdem Ovacik, Donkey Republic Bike-share

Roundtable on Micromobility, Equity and Sustainability 17-19 March 2021

Donkey Republic Sustainability

Framework

UBER

Everyone's Private Driver

Request from your phone, ride in style, and enjoy hassle free payments. Sign up now!

Tech companies have a

credibility problem

when they talk about

solving social issues.

Nowadays, all tech is under scrutiny - for a good reason

Nowadays, all tech is under scrutiny - for a good reason

Nowadays, all tech is under scrutiny - for a good reason

Do Uber, Lyft, Bolt etc aim to "acquire" customers and "graduate" them to the top ?

Car-centric mobility => higher profit

But not necessarily environmental or social well-being.

Expected market in Europe

How do we build trust?

Do not assume that tech is good by definition.

Tech, unregulated, can be bad for society and the planet

What if we bet on a well regulated future? from *wishful thinking* to *outcome measurement*

Need for:

- Rigorous framework and verifying 3rd parties for impact assessment
- As well as, financial incentives for positive footprint

Sir Ronald Cohen: "The Impact Revolution"

Mobility services' social and environmental scorecard

This is **not** about the value that user gets: convenience, availability, access, etc.

Private gains are expressed in what we pay to the operator.

Here, we explore public impact that does not get addressed in the transaction.

Starting documentation with a few

We started measuring the impacts with the marked ones

Reason:

- Available data
- Most interest

Cost / Benefit to Society	Considered effects	Studies Utilized
Health	Physical activity	DTU / COWI: Transport økonomiske enhedspriser for cykling
	Accidents	DTU / COWI: Transport økonomiske enhedspriser for cykling Min of Transport of Denmark: Evaluation of small motorized vehicles
	Air pollution	Eurostat: Handbook on the external costs of transport
Climate change	LCA - GHG emissions	OECD: Assessing the Environmental Performance of New Mobility
Congestion	Time delay costs	Eurostat: Handbook on the external costs of transport

See more about sources, and calculations on this GoogleSheet: https://docs.google.com/spreadsheets/d/1fQD_fa6x0Cl3z1tA3brdQQl1iTL9QjHyJnuMJHOkfIM

D	•	2	N	к	E	١	1
R	E	P	U	в	۰.	•	C

	EUR-cents pe passenger-km	r marginal n in urban areas	CO2 emissions per passenger km	Dresden Uni Study	
	Congestion	Health	GHG (LCA)	Replacement	
Donkey	0	131	17	100%	
eDonkey	0	88	45		
Car (ICE)	-35	-12.2	162	-6%	
eCar	-35	-11.6	124	-1%	
Bus (ICE)	-6	-2.0	92	-30%	
Rail	0	-0.5	66	-20%	
eScooter (shared, 2nd gen)	0	-140	107	-5%	
Bike	0	131	16	-14%	
eBike	0	88	34		
Walk	0	151	0	-24%	

D	•	2	N	к	E	١	1
R	E	P	U	в	۰.	•	C

	EUR-cents pe passenger-km	r marginal n in urban areas	CO2 emissions per passenger km	Dresden Uni Study Replacement	
	Congestion	Health	GHG (LCA)		
Donkey	0	131	17	100%	
eDonkey	0	88	45		
Car (ICE)	-35	-12.2	162	-6%	
eCar	-35	-11.6	124	-1%	
Bus (ICE)	-6	-2.0	92	-30%	
Rail	0	-0.5	66	-20%	
eScooter (shared, 2nd gen)	0	-140	107	-5%	
Bike	0	131	16	-14%	
eBike	0	88	34		
Walk	0	151	0	-24%	

A study by Dresden University, Sep-Nov 2020, Copenhagen, Denmark

From Current Investor Presentation

Note: Frost & Sulfvan 2020 and Management assessment *European Commission. Figures are for Germany *Donkey Republic Footprint Analysis. One trip is average 3km *European Commission 2019 9TF 2020 *COVWI 2020 *United Nations 2020 *European Cyclists' Federation 2018

Strictly confidential

DONKEY

Key Considerations in Regulating and Procurement

Subsidy Model	If there is subsidies, place some on trips				
No of operators	Depending on the size of city 1-3 operators				
Rider fee earnings	Regulations shall not inhibit operators making money from each marginal trip they conduct				
Control on prices	Operators should be able to regulate their prices to run a viable business				
Control on operations	Requiring vehicle conditions unnecessary				
Control on coverage	Requiring certain areas to be covered can disturb service, due to vandalism, usage levels				
Control on availability	Specific no of bikes in specific locations unnecessary with subsidies on trips				
Control on parking	Parking: Consider virtual stations.				
Sponsorships	Limits will reduce scalability of service				
Data sharing	Require high level of sharing				
Integration	End-game is full integration, but only if well- regulated who the MaaS platforms are				

Currently, most contracts have focus on **outputs** of operators with high level of control:

- Bikes, specified,
- System specified
- Operations specified

Too little innovation or scaling

Make contracts and permits based on **outcomes**:

- Generate trips
- In desired time and locations
- Allow operators to run viable business Examples exist in the UK, including: Hereford, Watford, Norwich, Bournemouth, Poole, Isle of Wright

Traditional Bike Shares

Driven by public procurement Very high level of control on everything Bespoke system Doesn't scale without new public contracts

VC Backed Businesses

Standard system Focus on scaling fast Some can see regulation as interference Sustainability of business model questionable

Controlled Parking

What if we bet on a well regulated future?

from *wishful thinking* to *outcome measurement*

Need rigorous framework for impact assessment

Sir Ronald Cohen: "The Impact Revolution"

Erdem Ovacik Cofounder, CEO erdem@donkey.bike CDI

22

ieTen