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Abstract 

This paper reviews methods that seek to draw causal inference from non-experimental data and shows how they 

can be applied to undertake ex-post evaluation of transport interventions. In particular, the paper discusses the 

underlying principles of techniques for treatment effect estimation with non-randomly assigned treatments. The 

aim of these techniques is to quantify changes that have occurred due to explicit intervention (or ‘treatment’). The 

paper argues that transport interventions are typically characterized by non-random assignment and that the key 

issues for successful ex-post evaluation involve identifying and adjusting for confounding factors. In contrast to 

conventional approaches for ex-ante appraisal, a major advantage of the statistical causal methods is that they can 

be applied without making strong a-priori theoretical assumptions. The paper provides empirical examples of the 

use of causal techniques to evaluate road network capacity expansions in US cities and High Speed Rail 

investments in Spain. 

 

Keywords: Causal inference; treatment effect; propensity score; ex-post appraisal. 

1. Introduction 

Ex-ante transport appraisal has well established theoretical and empirical roots in the consumer surplus 

based calculation of Cost Benefit Analysis (CBA). Recent work on Wider Economic Benefits (WEBs) 

has extended ‘standard’ CBA to incorporate some key externalities and forms of imperfect competition, 

again based on clearly set out theoretical and empirical evidence. CBA provides a familiar and well 

understood approach that is routinely used by Civil Servants, transport professionals, and academics. 

 

Considerably less attention has been paid to ex-post transport appraisal both in theory and in practice. 

This is presumably because we are generally more interested in predicting how our future investments 

will fare than in assessing how well we have allocated resources in the past. Yet if we want to obtain a 

solid understanding of the impacts that transport interventions will have, a good benchmark can be 

established by studying previous interventions and how they performed according to some defined 

metrics of interest. 

 

One way of doing this is to simply re-run the ex-ante CBA calculations some time after the project has 

been completed using observed rather than predicted values. This can provide useful information both 

on the impacts of the project itself and on how well ex-ante CBA was able to predict the benefits and 

costs of the scheme. Such calculations are, however, still generated within the theoretical framework of 

CBA which make a number of quite restrictive simplifying assumptions. An alternative approach is to 

apply statistical models to data observed before and after transport interventions and attempt to estimate 

impacts that were caused by the intervention. Such statistical approaches, which we refer to as methods 

for causal inference, rely more on empirical methods than economic theory, but have their own 

assumptions and properties that must be met in order to generate valid casual inference. 
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In this paper we review statistical approaches that are routinely used across a range of scientific 

disciplines to infer cause-effect relationships from observational data. We argue that a causal inference 

framework is highly suitable for ex-post appraisal because it is specifically designed to estimate effects 

that arise when ‘treatments’ are non-randomly assigned, as is the case with most transport interventions. 

The key consequence of non-random assignment is that the effect of the treatment is ‘confounded’, 

implying that units in receipt of the treatment (or some particular dose of the treatment) may differ in 

systematic ways from units with an alternative treatment status. The objective of causal analysis is to 

estimate the average effect of the treatment (or intervention) net of confounding, or in other words to 

uncover the marginal causal effect. We refer to this as a treatment effect estimation problem and it is 

within this context that we discuss possible methods for ex-post appraisal. 

 

The paper is structured as follows. Section 2 discusses ex-post appraisal as a treatment effect estimation 

problem within the potential outcomes framework for causal inference. It outlines the implication of 

non-random treatment assignment and the problem of confounding, and then introduces the key 

assumptions required for valid causal inference. Section 3 describes strategies for consistent treatment 

effect estimation. It discusses identification of causal effects under ‘ignorability’ via covariate 

adjustment, propensity score adjustment, and doubly robust methods. It then reviews two approaches 

that are commonly used when ignorability is not assumed to hold. Section 4 provides two empirical 

examples of the use of causal techniques for ex-post evaluation: one which evaluates the impacts of 

urban road network capacity expansions in the US and one which considers the regional economic 

impacts of High Speed Rail investments in Spain. Conclusions are then drawn in the final section. 

2. Ex-post Appraisal as a Treatment Effect Estimation Problem 

Our emphasis on causality in this paper arises from the conviction that transport policy is fundamentally 

concerned with cause-effect relationships. In the UK for example, the following concerns have been 

highly influential in decision making in recent years: 
 

 What effect will fuel taxation have on transport emissions?  

 By how much will traffic volumes reduce under congestion charging?  

 How will travel demands change as standards of living rise?  

 Will investment in transport infrastructure boost the productivity of the economy?  

 How will investment options affect network performance? 

Each of these issues involves a cause-effect relationship and the underlying goal of policy is to attempt 

to shape future outcomes via public intervention. For decision makers the question of interest is: what 

impact, or outcome, will proposed interventions have. 
 
Ex-post evaluation can help answer this question. By applying statistical models to historic data we can 

attempt to capture the key relationships of interest and can seek to evaluate the effect of past 

interventions on defined outcomes. There are, however, two key problems we face in obtaining a causal 

interpretation from observed data. First, is that we observe only what has actually occurred, not what 

would have taken place had we intervened in a different way. Second, the interventions we make are 

rarely randomly assigned and non-random assignment obscures cause effect relationships. Taken 
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together, these two issues in effect mean that we do not have experimental evidence upon which to base 

policy decisions. 
 
In this section we outline the potential outcomes framework for causal inference which can be used to 

obtain a causal interpretation of observational data in the absence of experimental conditions. We 

discuss the defining characteristics of this approach and demonstrate how it could be used to infer 

cause-effect relationships for transport interventions. 
 

Challenges in estimating the causal effect of treatments on outcomes  

There are three key components that require attention in analysing cause effect relationships from 

observed data: the intervention (or treatment) to be studied, the outcome of interest, and any relevant 

characteristics of the units of observation. For ex-post analysis we are fundamentally interested in the 

effect that a transport intervention (or some set of interventions) has on an outcome. We may wish to 

know what the outcome would have been had the intervention not been applied, or if some different 

intervention been applied. 
 
Relevant outcomes of interest could relate to traffic conditions (i.e. speeds, flow, safety, congestion), 

economic characteristics (i.e. output, productivity, growth), mode share, environmental consequences, 

social concerns, and so on. 
 
For analytical purposes an intervention in the transport system can be viewed as an observed realisation 

of random variables whose manipulation produces different outcomes. We refer to such random 

variables as ‘treatments’, defined in the broadest sense to encompass any ‘regime’ which can be 

manipulated to produce some effect. For instance, a treatment could involve the construction of a new 

link, the imposition of speed limits, changes in transport prices, changes in frequency or quality of 

service, allocation of subsidies, and so on. Treatment variables can be binary, multivalued, or 

continuous. Table 1 gives relevant examples of transport interventions classified as treatment variables. 

 

 
Table 1. Transport interventions classified as treatment variables 

 

binary multi-valued continuous 

   

tolled / untolled route frequency of service network capacity 

presence of speed camera speed limit length of segregated route 

20mph zone designation cars per train density of intersections 

peak / off-peak no. of O-D routes accessibility 

pedestrianized / unpedestrianized no. of network nodes tax / subsidy rates 

   

 
 

We are interested in the effect of the treatment on the outcome, but we also recognise that the units 

under study will likely not have homogeneous characteristics, and these may be relevant to the 

fundamental relationship of interest. Depending on the purpose of the analysis, and the available data, 

units could comprise particular transport schemes, network links, people, households, firms, 

geographical zones, cities etc. 
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We seek to estimate causal effects using data to represent these three components. We define zi = (yi, di, 

xi), i = 1, ..., n, as a random vector of observed data where for the i-th unit of observation yi denotes an 

outcome (or response), di the treatment (or exposure) received, and xi a vector of pre-treatment 

covariates. As mentioned previously, the treatment can be binary (i.e. D ∈ {0, 1}); multivalued, in 

which dose d can take values in m categories D ≡ (d0, d1, ..., dm); or continuous with dose d taking 

values in D ⊆ R. 

 
We want to estimate the effect that treatments have on outcomes. To do so we will draw on the potential 

outcomes framework for causal inference, which was first put forward for binary treatments in a series 

of papers in the 1970s by Rubin (e.g. Rubin 1973a,b, 1974, 1977, 1978), although Rubin acknowledges 

precursors to his approach in earlier works by Fisher (1935) and Neyman (1923). The potential 

outcomes framework defines the conditions under which we can estimate causal effects from observed 

data. These are two fundamental issues that shape the potential outcome approach. 
 

Missing data 

Ideally, we would calculate the effect of each treatment on an individual (or unit by unit) basis. Thus, 

for unit i and binary treatment D ∈ {0, 1} we can define two potential outcomes: Yi(0) if Di = 0, and 

Yi(1) if Di = 1. The individual causal effect (ICE) of the treatment is then defined as: 

 

τi = [Yi(1) − Yi(0)]. 

 
For multivalued or continuous treatment we can define a potential outcome Yi(d) associated with each 

dose of treatment d, with Yi = {Yi(d) : d ∈ D} denoting the full set of potential outcomes. The relevant 

ICEs would then be: 

 
τi = [Yi(d) − Yi(0)], 

 
or the difference between the outcome given assignment to dose d and assignment to no treatment. 
 
A key problem for causal inference, however, is that the data available for estimation reveal only actual 

outcomes not potential outcomes. For a binary treatment we observe:  

 

Yi = Yi(1) I1(Di) + Yi(0)[1 − I1(Di)], 

 

where I1(Di) is the indicator function for receiving the treatment, but we do not observe the joint 

density, f(Yi(0), Yi(1)), since the two outcomes never occur together. For multivalued or continuous 

treatments we observe only Yi(Di), and outcomes at all other levels, d ≠ Di, are unobserved and we refer 

to these as counterfactual outcomes. 

 
Thus, the problem we face is that the observed data do not provide enough information to evaluate ICEs 

because we do not observe the potential outcomes arising from treatment allocations that are contrary to 

fact. Holland (1986) refers to this as a fundamental identification problem of causal inference. A key 

insight of the potential outcomes approach is that if we focus on estimating average causal effects, rather 

than ICEs, then we do not have to observe all potential outcomes. 

Average casual estimands of interest include Average Potential Outcomes (APOs) and Average 

Treatment Effects (ATEs). For binary treatments the APOs are: 

µ(1) = E[Yi(1)]  and  µ(0) = E[Yi(0)], 
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and the ATE is defined as: 

 

τ (1) = µ(1) − µ(0). 

 

For continuous and multi-valued treatments the APO under treatment level d is denoted: 

 

µ(d) = E[Yi(d)], 

 

and the ATE is: 

 

τ (d) = µ(d) − µ(0). 

 

Other causal estimands can include ATEs on the treated, quantile effects, ATEs for a variety of sub-

populations, ATEs conditional on covariates, and causal odds and risk ratios. In this paper the primary 

concern is with APOs and ATEs as defined above. 

 

Non-random assignment and the problem of confounding 

The conditions under which we can use the observed data to estimate APOs and ATEs depend crucially 

on whether the treatment is assigned randomly or not. Figure 1 below shows a graphical comparison of 

randomised and non-randomisation treatment assignments. 

 

 

Figure 1. Directed acyclic graph of observational data with randomisation and 

non-randomisation of treatment assignment 
 

 
 

 
Under a randomised assignment unit characteristics X have no influence on the treatment received (i.e. 

on D). Consequently, potential outcomes are unconditionally independent of the treatment assignment 

mechanism. For binary treatments randomization implies: 

Yi(0), Yi(1)) ⊥ I1(Di) 

 

 

 

 

unrandomised     randomised 

 

 

 

 

D y 

X 

D y 

X 
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and for multivalued or continuous treatments: 

Yi(d) ⊥ Id(Di)  for all d ∈ D, 

 
where Id(Di) is the indicator function for receiving dose d of the treatment. Under a random assignment 

there are no systematic differences in characteristics between treated or controlled units, or in the case of 

multivalued and continuous treatments, between units receiving different doses of the treatment. 

Consequently, we can treat the unobserved potential outcomes much like data that are missing at 

random and consistent estimators of ATEs for binary and multivalued or continuous treatments can then 

be formed as: 

 

𝜏̂(1) =
∑ 𝑌𝑖 ∙ 𝐼1(𝐷𝑖)

∑ 𝐼1(𝐷𝑖)
−

∑ 𝑌𝑖 ∙ (1 − 𝐼1(𝐷𝑖))

∑(1 − 𝐼1(𝐷𝑖))
 

 

and: 

 

𝜏̂(𝑑) =
∑ 𝑌𝑖 ∙ 𝐼𝑑(𝐷𝑖)

∑ 𝐼𝑑(𝐷𝑖)
−

∑ 𝑌𝑖 ∙ 𝐼0(𝐷𝑖)

∑ 𝐼0(𝐷𝑖)
 

 

Under non-randomisation, however, allocation of the treatment depends on a set of covariates X which 

are themselves important in determining outcome Y. Thus, some part of the association between the 

treatment and the outcome could be attributed to X rather than D. Under these circumstance we refer to 

X as confounders and note that simple comparisons of mean responses across different treatment groups 

(as in equations 1 and 2) will not in general reveal a ‘causal’ effect because mean outcomes across 

treated and control units will differ regardless of treatment status. 

 

Identification of causal effects via the potential outcomes framework  

While non-random assignment has consequence for causal estimation, consistent estimates of APOs and 

ATEs can still be obtained under the potential outcome framework, but adjustment for confounding has 

to be made. In this subsection of the paper, we define the conditions under which causal estimates can 

be identified in the presence of confounding. 

 

There are three key assumptions required for valid APO and ATE estimation in the presence of 

confounding within the potential outcomes framework. These are as follows. 

 
1. Conditional independence -- the potential outcomes for unit i should be conditionally 

independent of the treatment assignment given a (sufficient) set of observed covariates Xi. For 

binary treatments the assumption requires that: 

Yi(0), Yi(1)) ⊥ I1(Di)|Xi, (3) 

 

and for multivalued or continuous treatments Imbens (2000) and Hirano and Imbens (2004) 

introduce the concept of weak conditional independence which can be stated as: 

Yi(d) ⊥ Id(Di)|Xi  for all  d ∈ D. (4) 
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The key difference between the binary and non-binary assumptions is that in the latter conditional 

independence is required to hold for each value of the treatment (i.e. pairwise), but not joint 

independence of all potential outcomes. 

 

The conditional independence assumptions essentially require that, conditional on some set of 

pre-treatment covariates, assignment to treatment does not depend on the outcome. If Xi is 

sufficient for this to hold then we can in effect mimic, for observational data, the assignment that 

would occur in a randomised control trial in which the treatment is allocated independently of 

pre-treatment characteristics. 

 

2. Common support - the support of the conditional distribution of Xi given a particular treatment 

status should overlap with that of Xi given any other treatment status. For binary treatments this 

requires that the probability of assignment to the treatment lies strictly between zero and one  

0 < Pr(I1(Di) = 1|Xi = x) < 1, ∀ x. (5) 

 

For multivalued or continuous treatments we require common support by treatment status in the 

covariate distributions within some region of dose C ⊆ D. A sufficient condition is that for any 

subset of C, say A ⊆ C, 

Pr(Di ∈ A|Xi = x) > 0, ∀ x (6) 

 

The intuition behind the common support, or overlap, assumption is that if some sub-populations 

observed in Xi have zero probability of receiving (or not receiving) a treatment, then it does not 

make sense in these cases to talk of a treatment effect since the counterfactual does not exist in 

the observed data. 

 
3. Stable unit treatment values - the relationship between observed and potential out-comes must 

comply with the Stable Unit Treatment Value Assumption (SUTVA) (e.g. Rubin 1978, 1980, 

1986, 1990), which requires that the observed response under a given treatment allocation is 

equivalent to the potential response under that treatment allocation. For binary treatments we 

require that:  

Yi = I1(Di)Yi(1) + (1 − I1(Di))Yi(0) (7) 

 

for all i = 1, ..., N . For multivalued or continuous treatments we require: 

Yi ≡ Id(Di)Yi(d) (8) 

 

for all d ∈ D, for all Yi(d) ∈ Yi, and for i = 1, ..., N. 

 

The SUTVA requires that the outcome for each unit be independent of the treatment status of 

other units, or in other words, there should be no interference in treatment effects across units 

(Cox 1958). It also implies that there are no different versions of the treatment. The 

no-interference assumption is generally satisfied when the units are physically distinct and have 

no means of contact. Violations of the assumption can occur when proximity of units allows for 

contact and this presents a particular concern for transport applications. 
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The three assumptions defined above, which are together referred to by Rosenbaum and Rubin (1983) as 

strong ignorability, allow for identifiability of causal effects from observational data. In the case of 

binary treatments the ATE can be derived as: 

 

τ =Ei(Yi(1) − Yi(0)) = EX [Ei(Yi(1)|Xi = x) − Ei(Yi(0)|Xi = x)]         (9a) 

=EX [Ei(Yi(1)|Xi = x, I1(Di) = 1) − Ei(Yi(0)|Xi = x, I1(Di) = 0)]       (9b) 

=EX [Ei(Yi|Xi = x, I1(Di) = 1) − Ei(Yi|Xi = x, I1(Di) = 0)] .               (9c) 

 
Conditional independence justifies the equality of (9a) and (9b), the SUTVA allows the substitution of 

observed for potential outcomes to give (9c), and overlap ensures that the population ATE in (9c) is 

estimable since there are units in both the treated and untreated groups. Note that the ATE is defined as 

an expectation over covariates X. If we do not take this expectation, but instead simply use the 

integrand, we obtain an estimate of the causal effect of D within strata of X. In other words, we get the 

conditional treatment effect, that is the average treatment effect for units with characteristics X = x. By 

integrating X out of this distribution we get the average causal intervention distribution. 

 
For continuous or multivalued treatments the APO under a given dose D = d, µ(d) = E[Yi(d)], or the 

dose-response function, can be derived as, 

 

E[Yi(d)] = EX [E(Yi(d)|Xi )] = EX [E(Yi(d)|Id(Di), Xi )] = EX [E(Yi|Id(Di), Xi)] ,     (10) 

where the second equality follows from conditional independence, the third from the SUTVA, and the 

overlap assumption ensures that the APO is estimable since there are comparable units across treatment 

levels. 
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3. Causal Methods for Treatment Effect Estimation 

The literature on methods for causal estimation is vast and growing at a rapid rate. Consequently, a truly 

comprehensive review of the field is outside the scope of this paper and in fact would make little 

contribution since excellent up-to-date reviews already exist such as those by Hernan and Robins 

(2012), Imbens and Wooldridge (2009), Tsiatis (2006) and van der Laan and Robins (2003). Instead, we 

outline the general principles under which the construction of estimators proceeds. We do so first for 

methods that assume ignorability and then we consider two popular approaches that are used when 

ignorability is thought to be violated. 

 

Treatment effect estimation under "ignorability"  

Using the notation of Tsiatis and Davidian (2007), we define joint densities of the observed data of the 

form: 

 

fZ (z) = fY|D,X (y|d, x)fD|X (d|x)fX(x). 

 

When ignorability is assumed to hold, estimation of APOs and ATEs generally proceeds in one of the 

following ways: 

 

a) Direct covariate adjustment - leave fD|X(d|x) and fX(x) unspecified and posit a model for E[Yi|Di, 

Xi]; the expectation of the conditional density of the response given treatment and covariates. This is 

typically achieved via an outcome regression (OR) model such as a Generalized Linear Model 

(GLM), a Generalized Linear Mixed Model (GLMM), a Generalized Additive Mixed Model 

(GAMM), or other spline-based approach. ATEs can be estimated directly from these OR models. 

This regression approach is commonly used in transport analyses. 

 

b) Propensity Score adjustment - leave fY|X(y|x) and fX(x) unspecified but assume a model for 

fD|X(d|x) and use these to form Propensity Scores (PS), which measure the probability of assignment 

to treatment given the set of observed pre-treatment covariates. An important result, due to 

Rosenbaum and Rubin (1983), is that the conditional independence assumption (i.e. equations 3 and 

4) can be restated by replacing the covariate vector Xi with the scalar PS. Rosenbaum and Rubin 

(1983) proved this result in the case of binary treatments and Imbens (2000) and Hirano and Imbens 

(2004) generalise the PS to cover the case of multivalued and continuous treatments. 

 

The PS are to be used to form a number of different nonparametric and semiparametric estimators, via 

weighting, matching, stratification, blocking and regression (for details, see Imbens and Wooldridge, 

2009). A key advantage in using the PS is that it avoids the need to condition on a potentially high 

dimensional covariate vector and it is this dimension-reducing property that allows for effective 

implementation of flexible estimators .Another advantage of the PS is that it is highly effective in 

isolating the region of common support, a task that is difficult using multiple covariates (for discussion, 

see Joffe and Rosenbaum, 1999). 
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c) Doubly Robust estimation - leave f(x) unspecified but assume both an OR model and a PS model 

and form an estimator that combines both models. This is usually achieved by weighting or 

augmenting the OR model with covariates derived by inverting the PSs. The key feature of 

doubly-robust estimators is that APO and ATE estimates are consistent and asymptotically normal 

when either the OR or the PS model are correctly specified, but we do not require both models to be 

correct (e.g. Robins, 2000; Robins et al., 2000; Robins and Rotnitzky, 2001; van der Laan and 

Robins, 2003; Lunceford and Davidian, 2004; Bang and Robins, 2005; Kang and Schafer, 2007). 

The rationale for doubly-robust estimation is that the analyst effectively has two chances at getting 

the model specification right.  

 

Estimation given a non-ignorable treatment assignment  

The validity of the estimation approaches discussed in the previous subsection requires us to maintain 

that ignorability holds. When this assumption is no longer tenable we have to look at other approaches. 

In this subsection we review two popular estimators that are used when ignorability is not assumed: 

differences-in-differences and instrumental variables. 

a) Differences-in-differences - a common problem in identifying causal effects is that there may be 

unobserved differences between the treated and untreated units which affect potential outcomes and 

are also influential in treatment assignment. In addition, we may suspect that temporal trends affect 

the outcome variable due to events that are unrelated to the treatment.  

 

The differences-in-differences (DID) estimator addresses such potential sources of bias by using 

information for both treated and control groups in both pre- and post-treatment periods. The DID 

estimator approximates:  

 

τDID = {E [Yi(1)|D = 1] − E [Yi(1)|D = 0]}−{E [Yi(0)|D = 1] − E [Yi(0)|D = 0]}       (11) 

 

The ‘double-differencing’ of the DID estimator removes two potential sources of bias. Firstly, it 

eliminates biases in second period comparisons between the treated and control groups that could arise 

from time invariant characteristics. Secondly, it corrects for time-varying biases in comparisons over 

time for the treated group that could be attributable to time trends unrelated to the treatment. 

 

It is important to note two potential limitations with the DID approach. First, it relies on the strong 

identifying assumption that the average outcomes for the treated and control groups would have 

followed parallel paths over time in the absence of the treatment. 

 

Second, the model is sensitive to error specification, and in particular, it has been shown that the 

existence of correlation within groups or over time periods can adversely affect the performance of the 

DID estimator (Bertrand et al., 2004). 
 
b) Instrumental Variables (IV) - the IV estimator is well known and widely used and for that reason 

we do not provide an extensive review here. The key principles of IV estimation are:  

 

1. Find a set of instruments which are exogenous and highly correlated with the covariates.  

2. Use the instruments to enforce orthogonality between the error term and an instrument 

transformed design matrix. 
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The relationships assumed in IV estimation are shown graphically below in the context of the linear 

regression model y = Xβ + u with instrument matrix Z.  

 

 

Figure 2. Relationships in instrumental variables estimation 

 

 
The defining characteristics of the IV model are that: changes in z are associated with changes in x, but 

do not lead to changes in y other than through x; z is causally associated with x but definitely not with u; 

z would not be found in the regression model for y. 

 

A common method used to obtain IV estimates is two-stage Least Squares (2SLS): 

 

1. Regress each column of X on the instrument matrix Z.  

2. Regress y on the predicted values from the first stage.  

IV can be used to establish causal effects under a non-ignorable treatment assignment and is particularly 

useful when endogeneity via bi-directionality is present. However, it is crucial that the two key 

assumptions of exogeneity and relevance are met, and in practice such instruments can be hard to find. 

When instruments are only weakly correlated with the endogenous regressors, or when the instruments 

themselves are correlated with the error term, IV estimation can produce biased and inconsistent 

estimates. This problem is further confounded by the fact that the available diagnostic statistics do not 

provide a full proof means for detecting an inadequate instrument specification. To quote Hahn and 

Hausman (2003), even using standard tests for instrument validity “the researcher may estimate ‘bad 

results’ and not be aware of the outcome” (p 118). In addition it is also worth noting that the IV 

estimator can be much less efficient than OLS. 

z x  y 

 

 

 u 
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4. Applications 

In this section we describe two applications of the treatment effect approach for ex-post evaluation of 

transport interventions. The first relates to an ex-post evaluation of urban road capacity expansions in 

the US. The objective is to estimate ATEs from road capacity expansion in relation to induced traffic 

demand, traffic densities and productivity. The study uses a PS based methodology for dose-response 

estimation for continuous treatments proposed by Graham et al. (2014). The second application 

considers the regional economic impacts of high speed rail investment in Spain using a DID estimator. 
 

Ex-post evaluation of urban road capacity expansions in US cities  

Objective  

The objective of this study is to use available longitudinal data to assess the impacts of urban road 

network capacity expansions on traffic volumes, traffic densities and productivity. 

Method  

The study uses a GPS based regression methodology to control for confounding and estimate APOs and 

ATEs. The APOs of interest are defined by µ(d) = E [Yit(d)] and the ATEs by τ(d) = E [Yit(d)] − E 

[Yit(0)], where d is some dose of capacity expansion, i indexes units and t indexes time. Calculations are 

made for several doses of interest and a dose response curve is formed using penalised spline regression. 

 

As mentioned above, the GPS is defined by π(Dit = d|Xit; 𝛼) and for valid causal inference we require 

conditional independence and common support: 

Yit(d) ⊥ Dit = d|Xit  and  Pr(Dit ∈ A|Xit = xit) > 0 ∀ xit, A ⊆ C 

 

where C is a region of common support (e.g. Hirano and Imbens, 2004). 

 

Consistency requires that Xit is sufficient to represent confounding. This is, however, effectively an 

untestable assumption. In longitudinal applications we often assume the existence of unobserved 

covariates Ui or Wi, say, which could enter our causal model such that Dit = f (Xit, Ui, Wi) and Yit ⊥ Dit = 

d|Xit, Ui. Thus, Ui is a time-invariant unobserved confounding covariate while Wi is a time-invariant 

unobserved non-confounding covariate. To address this issue, Graham et al. (2014) specify a 

longitudinal mixed (LM) model for the GPS: 

 

𝐷𝑖𝑡 = 𝑋𝑖𝑡
𝑇 𝜃1 + 𝑏𝑖 + 𝐻𝑖,𝑡−𝑝

𝑦𝑇
𝜃2 + 𝜀𝑖𝑡 with      𝑏𝑖~ 𝑁(0, 𝜎𝑏

2 

 

which, in addition to observed time-varying confounders Xit conditions on unobserved unit level effects 

bi and some lag of the response variable 𝐻𝑖,𝑡−𝑝
𝑦

. Thus the paper proposes a GPS approach to ATE 

estimation which allows for for measured time-varying confounding, unobserved time invariant 

confounding, and bi-directionality between response and treatment.  
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Analytical results and simulations presented in the paper show that under given conditions a LMGPS 

approach will yield unbiased estimates of the dose-response function, but more extensive conditioning 

can adversely affect efficiency and can render the task of finding overlap in support of the covariate 

distribution more challenging. 

 

The algorithm for ATE estimation under the LMGPS approach is as follows: 

 

1. Estimate fD|X,U (Dit|Xit, bi; α) using a mixed model;  

2. Use 𝛼, with some appropriate density function, to calculate LMGPSs for observed π(Dit|Xit, bi; 𝛼) 

and unobserved π(d|Xit, bi; 𝛼) treatments;  

3. Isolate a common support region  

Pr(Dit ∈ A|Xit, bi) > 0 ∀ xit, A ⊆ C ; 

 

4. Estimate E [Yit|Dit, π(Dit|Xit, bi; 𝛼)] using a flexible model;  

5. Average over predicted values from 4., evaluated at dose d, to obtain a point estimate of the APO 

at d: µ (d);  

6. Repeat for all dose of interest, form the dose-response curve, and estimate ATEs:  

  τ(d) = µ(d) − µ(0) 

 

7. Use a single (block) bootstrap re-sampling scheme over 1. to 6. to obtain standard errors.  

Data  

The data available for estimation are taken from the Texas Transportation Institute (TTI) urban mobility 

data, which describe traffic conditions for 101 US cities over the 1982-2007. 

 

 

Figure 3. Cities in Texas Transportation Institute urban mobility data 
 

 



CAUSAL INFERENCE FOR EX-POST EVALUATION OF TRANSPORT INTERVENTIONS 

Daniel Graham — Discussion Paper 2014-13 — © OECD/ITF 2014 17 

 

Responses:  Annual proportional change in demand (vmt), network performance (delay per vmt), and 

productivity (average wage). 

 

Treatment: Annual proportional change in network lane miles. 

 

Pre-treatment covariates (confounders): 

 

 Lagged responses: to capture reverse causality;  

 Congestion & traffic volume: measured by delay and vmt;  

 Network scale & mix: network length, mix of freeway / arterial;  

 Traffic mix: volume on freeway / arterial;  

 Mode characteristics: public transport patronage, state fuel price;  

 Economy: productivity, income and economic structure;  

 Employment and population distribution and growth.  

Unobserved (unknown) confounders: zone / area /region characteristics, road network design, 

activity/travel behaviour. 

Results  

The results for our three responses are shown graphically below. In each figure the y-axis shows the 

ATE and the x-axis shows the corresponding dose of capacity expansion. 

 

First we consider results for traffic volumes as measured by vmt. 
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Figure 4. Dose-response relationship for traffic volumes 

 
 

The results show evidence of induced demand over the range of dose having adjusted for confounding. 

The ATE is growing faster than capacity for doses of up to 2% increase in capacity. On average we find 

that a 10% increase in lane miles is associated with a 9% increase in vmt net of ‘natural growth’ 

(estimated 1.4% per annum). As a consequence of this, we find that capacity expansions in the range 

considered have not in general reduced traffic density (i.e. the traffic volume to capacity ratio). 

 

Next, we look at impacts on network performance as measured by delay per vmt. 
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Figure 5. Dose-response relationship for network performance (delay per vmt) 

 
 

The results indicate that capacity expansions have not ameliorated urban congestion. The average road 

user has not experienced change in delay from capacity expansions as there has been no statistically 

significant effects on delay per vmt, and we find this to be the case even for large capacity expansions. 

In fact, due to due to natural growth congestion has worsened by approximately 3% per annum and 

because there is now more traffic total urban delay increases over the range of dose. 

 

Finally, we look at effects on productivity as represented by the average urban wage rate. 
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Figure 6. Dose-response relationship for productivity (average wage) 

 
 

The results indicate that urban road network expansions have not induced higher productivity. If we run 

a ‘naive’ regressions of productivity on treatment we do find a positive association between capacity 

growth and wages, but we do not find significant ATEs having adjusted for confounding and isolated a 

region of common support. 

 
Thus, our causal analysis finds that urban road network expansions have induced demand but have not 

ameliorated congestion or raised productivity. These results do not imply that there are no economic 

benefits from road capacity expansions per se. The results are specific to marginal changes on mature 

congested urban networks. While capacity expansions have allowed for increased mobility, in the sense 

that there is more traffic, network generalised costs have not improved and total urban delay has risen. 

The scale (increased traffic) effect does not appear to have influence productivity (either +ve or -ve). 
 

Ex-post evaluation of regional economic impacts of high-speed rail in Spain 

Objective  

Between 2000 and 2010 the Spanish Government carried out the largest high-speed rail construction 

programme in Europe such that by 2011 the Spanish HSR network had become the largest in Europe, 

exceeding France and Germany. By 2020, it is planned that 90% of the country population will live 

within a 50km radius to the nearest high-speed rail station. In-vestments in high-speed rail projects are 
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frequently justified on the basis of projected positive effects on regional and national economic growth. 

In this application, a DID analysis is under-taken to study impacts on economic output arising from 

construction of the Madrid-Barcelona high speed rail corridor. This is PhD work which is still in 

progress, and is presented here as an illustration of ex-post evaluation rather than as a definitive 

statement on the impacts of HSR in Spain. 

Method  

To assess the effect of the HSR corridor linking Madrid with Barcelona we divide the Spanish economy 

into 47 peninsular provinces and treat access to HSR as a binary treatment. Provinces receiving/not 

receiving a HSR connection are called treated/untreated and provide the basis for the DID analysis. 

These are shown in Figure 7. We use GVA per capita (GVApc) as the outcome variable in province i at 

time t. We run a regression of this response on the year variable, a binary variable for each of the groups 

(east, west and north) and the three interaction terms between year and the three potential control groups 

north, east and west (year*east, year*west and year*north respectively) where the base case is the group 

of treated provinces. We also estimate the same equation adding two covariates to account for the 

economic structure of the different provinces: share of jobs in manufacturing, energy and construction 

sector (share industry) and share of jobs in the services sector (share services). 

Results  

The results indicate that predictions of a positive impact on the economic performance of regions 

receiving HSR have not taken place, at least in the short to medium term. In the case of the 

Madrid-Barcelona HSR corridor, our results show that there are no significant differences in the pattern 

of regional economic growth before and after the HSR corridor between the treated and untreated 

provinces. 
 
 

Figure 7. Control and treated provinces for the north-east corridor of Spain 
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5. Conclusions  

In this paper we have reviewed methods that seek to draw causal inference from observed data and have 

shown how they can be applied to undertake ex-post evaluation of transport projects. We argue that a 

causal inference framework based on potential outcomes is highly suitable for ex-post appraisal because 

it is specifically designed for instances in which ‘treatments’ are non-randomly assigned and 

experimentation is not possible, circumstances that characterise the allocation of transport interventions. 

The methods we review have been used extensively for casual analysis across a range of scientific 

disciplines, but to our knowledge have received little attention in transport analyses. We provide two 

applications of ex-post evaluation based on causal techniques: one which evaluates the impacts of urban 

road network capacity expansions in the US, and one which considers the regional economic impacts of 

High Speed Rail investments in Spain. 
 
A major advantage of the statistical causal methods is that we can use them to analyse the impact of 

interventions without making strong a-priori theoretical assumptions about underlying economic 

behaviour, as is required in ex-ante or ex-post CBA. However, valid causal inference from observational 

data has its own set of of rather stringent assumptions, which in many instances may not hold in the 

available data. 
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