

Rijkswaterstaat Ministerie van Verkeer en Waterstaat

veiligheid 🌩 nl

The safety of electrically assisted bicycles (EBs) compared to classic bicycles (CBs) in the Netherlands

Paul Schepers, Karin Klein Wolt, Elliot Fishman

Introduction

- Increasing use of Electric Bicycles (EBs) up to 25 km/h
- Especially among (vulnerable) elderly particularly
- Need for knowledge on road safety effects of EBs

What do people usually believe?

EB is more dangerous EB leads to more serious injuries

Research questions

- Does crash likelihood differ between those riding EBs and CBs?
- Does crash severity differ between EB and CB crash victims?

Bicycle type	Victims treated at EDs	Cyclists/ Controls without accident
EB		
CB		Comparison 1

Research questions

- Does crash likelihood differ between those riding EBs and CBs?
- 2. Does crash severity differ between EB and

CB crash victims?

Bicycle	Victims trea	ated at EDs	Cyclists/ Controls
type	Hospitalised	ED only	without accident
EB			
CB		Comparison 2	

Context: The Netherlands

- High cycling participation (26% modal share)
- Stable number of cyclist deaths, rise of serious injuries
- Need for knowledge within the Transport Ministry

Literature: crash research

Conclusions of a similar study conducted in 2013:

- EB users are more likely to be treated at an ED after a crash
- Crash severity did not differ between EB and CB crash victims
- We are not aware of other studies on crash likelihood; conclusion 2 is confirmed in several crash studies

Literature

- Cruising speed differs between 1 to 3 km/h between EBs and CBs: unfavourable for safety except under adverse conditions such as riding uphill
- EBs weigh some 5 kg more than CBs and have a different weight distribution, which interferes with (dis)mounting (experimental research):
 - less stable in the initial mounting phase (transition from 'earth bound' to 'balance')
 - help to accelerate faster
- Hypothesis: front wheel traction problematic
- EB users more vulnerable: older, more morbid conditions and more likely to be obese

Method: case-control study

KANTAR TNS.

Bicycle type	Victims treated at EDs	Cyclists/ Controls without accident
EB	795	357
СВ	1,788	1,451
Total	2,383	1,808

DISS case-referent study 2016 on cycling accidents

- All cycling accidents between January 1, 2016 and January 1, 2017, treated at a DISS Emergency Department
- Structured paper questionnaires and link to online questionnaire sent by hospitals to more than 8.000 victims
- 60 questions on causes, circumstances and effects
- Response rate: 38%

Questionnaire study control group

- Conducted by Kantar, one of the largest panel survey companies in the Netherlands
- 3,364 disseminated with one batch per week, yielding a response of 1,808 cyclist without known crash involvement (54%)
- Similar questions application to 'non-victims'
- Cyclists were classified EB users if they rode over half of the distance cycled per year on an EB veiligheid hl

Corrections for selective nonresponse

- We used weighting factors, based on comparing the response among victims /controls to DISS / the Dutch population
- Weighting factors used in SPSS to represent age, gender and other demographical characteristics in the Dutch population

Analysis

Comparison on 2 items using binary logistic regression in SPSS:

- Crash likelihood (victim vs control)
- Injury severity (hospital admittance vs ED only)

Crash likelihood... EB seems more likely to be treated at an ED....

Table 3. Association between bicycle type and involvement in crashes for which treatment at an ED is needed

	Treated	l at an ED	
	no	yes	OR (95%CI)
N*	1,806	2,082	

		,	Fronted			
		no		yes		OR (95%CI)
N* Categorical variables type of bicycle CB		1,806 sha		2,082 hare		
		82%		77%		1
EB		189	6	23%		1.24 (1.03 - 1.48)
-	no one o	one or more	57% 43%	58% 42%	1 1.10 (0.94 - 1.	29)
-	morbid conditions one or more		39%	30%	0.65 (0.55 - 0.	75)
	none Continue var.		61% gem	70% a (SD)	1	
F	Body Mass Index Nagelkerke R ²		25.8 (4.8)	24.5 (4.1)	0.94 (0.93 - 0.	96)

* Number of included cases, cases with missing values for one of the variables are excluded; numbers are therefore lower than in table 1

But, after controlling for distance...

	Treated a	t an ED	
	no	yes	OR (95%CI)
N*	1,806	1,882	
Categorical variables	sha	re	
type of bicycle			
CB	82%	77%	1
EB	18%	23%	1.18 (0.97 - 1.43)
Continue var.	gem (SD)	
annual km by bicycle	1098	2725	0.94 (0.93 - 0.96)
	(1611)	(2931)	
ln(annual km by bicycle)			
Nagelkerke R ²	24.5		

Injury severity

Table 5. Association between bicycle type and injury severity (hospitalization required after

an ED treatment)

			Admitted to no	hospital yes	OR (95%	oCI)
		N*	1,622	460		
	Categorical variables		shar	e		
	tvne of bicvcle					
			Admitted	to hospital		
			no		yes	OR (95%CI)
	N*		1,622		460	
Categorica	al variables		sh	are		
type of b	icycle					
CB			78%		73%	1
EB			22%		27%	1.17 (0.89 - 1.55)
1	1 2 uays	1	1.0/01	10/01	1.02 (0.2	- 1.02
	3 - 4 days		26%	29%	1.21 (0.70	0 - 2.09)
	4 – 7 days		54%	54%	1.28 (0.75	5 - 2.17)
	medication use					
	none		59%	52%	1	
	one or more		41%	48%	1.12 (0.87	7 - 1.43)
	morbid conditions					
	one or more		28%	35%	1.22 (0.96	5 - 1.56)
	none		72%	65%	1	
	speed					
	up to 5 km/h		6%	9%	1	
	15 - 25 km/h		22%	22%	0.77 (0.50) - 1.21)
	up to 5 km/h		37%	33%	0.75 (0.49	9 - 1.16)
	5 - 15 km/h		23%	27%	0.95 (0.60) - 1.51)
	> 25 km/h		12%	11%	0.73 (0.43	3 - 1.25)
	Continue var.		gem (S	D)		
	Body Mass Index		24.6 (4.4)	24.2 (3.4)	0.94 (0.9]	l - 0.97)
	Nagelkerke R ²		56		,	· · · · · · · · · · · · · · · · · · ·

* Number of included cases, cases with missing values for one of the variables are excluded; numbers are therefore lower than in table 1

Crash type: (dis)mounting

Table 6. Association between bicycle type and involvement in crashes regarding (dis)mounting the bicycle

÷		~~~~,		
		Cras mounting/	sh type dismounting	
		no	yes	OR (95%CI)
	N*	1,890	172	
	Categorical variables	sl	hare	
	type of bicycle			
	CB	79%	61%	1
	EB	21%	39%	0.92 (0.59 - 1.43)
	gender			
	male	53%	29%	1
	female	47%	71%	1.40 (0.91 - 2.17)
	age			
	16 - 24 years	18%	6%	1
	24 - 49 years	31%	10%	1.03 (0.39 - 2.69)
	50 - 69 years	35%	34%	1.94 (0.81 - 4.64)
	>70 years	16%	50%	3.09 (1.26 - 7.55)

Conclusions

- After controlling for distance travelled and other potential confounders we find :
 - no difference in crash likelihood and injury severity between EB and CB users
 - crashes on EBs and CBs to be equally severe
- A higher share of EB crashes are while (dis)mounting but there is no difference with CB crashes after controlling for factors such as gender and age

Recommendations for practitioners

- General road safety / cycling safety measures are likely to improve safety of EB users as well
- Designing a bicycle such that cyclists can sit on their saddle with their feet on the ground ((dis)mounting accidents!)

Research limitations and recommendations

- Self reporting bias
- + The possibility to control for a wide range of factors

We recommend future research using more standard crash databases and travel surveys although the range of possible control factors in such research is more restricted

We recommend **EXPERIMENTAL RESEARCH** to expand our understanding of how to design safer EBs and training programs

veiligheid 🔶 nl

Paul Schepers - paul.schepers@rws.nl

Karin Klein Wolt - k.kleinwolt@veiligheid.nl

Elliot Fishman - info@sensibletransport.org.au