

IFSTTAR

WORLD ROAD ASSOCIATION

www.piarc.org

PIARC Special Project "Electric Road Systems"

Miguel Caso Florez, PIARC Bernard Jacob, IFSTTAR

29 June 2018

Decarbonization of Road Freight

PIARC's key missions and organization

- Be a leading international forum for analysis and discussion of transport issues related to roads
- Identify, develop, and disseminate best practice and give better access to international information
- Consider the needs of developing countries and countries in transition
- Design, produce, and promote efficient tools for decision making in road and transport engineering and policies.
- 121 National governments, members from 140 countries
- 1200 experts currently mobilized in TCs and WGs
- Operations guided by a 4-year Strategic Plan

Electric Road Systems PIARC Special Project

PIARC has launched in October 2017 a Special Project called "Electric Road Systems: a solution for the future?"

Objectives:

- Draw current practices on ERS all over the world including TRL (Technology Readiness Level)
- Engage with different stakeholders: road administrations, road construction companies, vehicles manufacturers, researchers, power supply companies...
- Produce an holistic vision of ERS: different technologies (conduction and indication in different positions), different vehicles (cars and HVs) construction and operation phases, road safety, tunnels, landscape impact, etc. including impact of rival technologies such a long autonomy batteries.
- Produce an objective recommendation to NRA about engaging ERS or not.

Electric Road Systems Schedule and methodology

Final report expected by October 2018 in English, French and Spanish, available for free at www.piarc.org

- A total of 24 case studies in 12 countries plus two global initiatives have been analysed.
- Ongoing survey online to stakeholders with more than 150 answers from more than 40 countries.
- 114 literature reviews and classified

Transport

Forum

Potential impacts of ERS according to stakeholders:

Impact	Significant Adverse Impact	Adverse Impact	No Impact	Minimal Benefit	Significant Benefit
Greenhouse Gas Emissions	3%	2%	3%	15%	78%
Local Air Quality	4%	1%	4%	18%	73%
Operation, Costs for Road Admin	20%	33%	16%	16%	15%
Vehicle Operating Cost	3%	17%	16%	31%	33%
Noise	2%	3%	16%	31%	48%

Electric Road Systems Preliminary results (2)

Ranking of top challenges for ERS implementation:

- 1- Installation Cost & Maintenance Costs
- 2- Impact on Road Infrastructure
- 3- Regulatory and Business Model
- 4- User Acceptance and Public Opinion
- 5- Technical Feasibility
- 6- Increased Electricity Demand
- 7- Safety and Security
- 8- Ownership and Political Influence
- 9- Reliability and Availability of Road Network

Electric Road Systems Preliminary results (3)

Technology Readiness Level (TRL) and time for deployment according to stakeholders:

	TRL Level (1-9)	Years to Deployment
Inductive (Static)	6.5 ++	2.2
Inductive (Dynamic)	5.0 +	5.5 -
Conductive (Dynamic Overhead)	5.9	4.1
Conductive (Dynamic In-road)	5.2	5.5
Conductive (Static Overhead)	6.8	2.3
Conductive (Static In-Road)	5.7 +	4.0 -

Thank you for your attention

www.piarc.org

🛕 info@piarc.org

@PIARC_Roads

in World Road Association PIARC

bernard.jacob@ifsttar.fr

