### Electrification and a need for road user charging

Highlighting discussions and issues from The Netherlands and Vancouver, CA.



Dirk van Amelsfort, Goudappel Coffeng Presentation at Expert Workshop on International best practices to promote eco-friendly cars 26 January 2021



#### **Presentation outline**

- Two cases: The Netherlands and Vancouver
- What are some of issues public agencies are facing regarding electrification where road user charging could make a difference.
- What are the contributions and issues with road user charging (interpreted as a distance based charging policy)
- How are the needs for charging policies different between cities and regions/nations
- How could we acknowledge all needs in a common transition path

#### **The Netherlands**

- A long history of discussing (and failing to introduce) different form of pricing
- Currently working on distance based charging for both freight (more or less decided) and private vehicles. The latter in large part from a motivation of decrease fuel excise revenues as a result of electrification
- A distance based scheme with OBUs to track and charge individual vehicles will replace part of the current fixed registration fees and fuel taxes in a budget neutral way.
- The Ministry of Finance is the driving force

#### Vancouver

- Independent commission looked at a variety of mobility pricing policy options and conducted a large public outreach effort to understand public opinions
- Both point based and distance based policies were considered
- Three main objectives
  - Regional congestion reduction
  - Fairness
  - Infrastructure funding



#### Congestion

- A. Deliver meaningful reductions in traffic congestion
- B. Ensure everyone pays a fair share
- C. Coordinate all the ways we pay for mobility, including new and emerging services

#### Fairness

- A. Be consistent and explainable
- B. Support equity
- C. Align prices for road use with access to transit



A. Ensure accountability in the way revenues are used

B. Not have raising revenue as its primary aim

#### Other considerations

- A. Deliver positive economic benefits
- B. Protect individual privacy
- C. Be predictable, but adaptable

D. Support goals for regional growth, climate change, and the environment

E. Continue to be explored with the public and stakeholders

## **Policy issues with EVs**

- Nations depending on gas taxes or other fuel based taxations see a decline in revenues.
- Lower marginal costs of car travel can lead to 20%-30% more delay time
  - Longer trips
  - More trips (if EVs are comparable in price to ICE)
- Distribution effects of EV subsidies

Tabel 3.3 Verandering overheidsinkomsten (mld euro) bij elektrische personenautomobiliteit

|                    | BPM          | MRB         | accijns + BTW/<br>energieheffing | Totaal      |
|--------------------|--------------|-------------|----------------------------------|-------------|
| Inkomsten in 2010  | 2            | 5           | 5½                               | 12½         |
| 2030 Conventioneel | 2½ tot 3     | 5½ tot 7½   | 6½ tot 8½                        | 14½ tot 18½ |
| 2030 Elektrisch    |              | 4½ tot 6½   | 4 tot 51/2                       | 8 tot 12    |
| Verschil           | - 2½ tot - 3 | - ½ tot - 1 | - 3                              | - 6 ½       |



## Marginal costs for car use decrease



#### Car ownership still increases





### Road user charging part of the solution?

Two cases: Vancouver, The Netherlands



# Societal benefits of revenue neutral kilometer charges in the Netherlands

- In the base case all scenarios have negative societal outcomes
- With larger economic growth or higher valuation of CO2 the societal effects become positive

Tabel 2 Maatschappelijke kosten en baten gevoeligheidsanalyses betalen naar gebruik (effecten ten opzichte van referentie, contante waarde effecten 2020-2050, prijspeil 2020, in marktprijzen, in € miljarden)

|                                          | V0   | V1   | V2   | V3A   | V3B   | V3C  |
|------------------------------------------|------|------|------|-------|-------|------|
| Basispad-scenario                        | -5,5 | -3,4 | -4,9 | -6,7  | -6,4  | -3,6 |
| WLO Laag-scenario                        | -9,4 | -3,7 | -9,1 | -11,2 | -11,1 | -9,0 |
| WLO Hoog-scenario                        | 1,5  | -2,7 | 2,5  | 1,7   | 2,4   | 6,6  |
| Discontovoet van 2,5%                    | -5,7 | -3,6 | -5,1 | -7,1  | -6,7  | -3,7 |
| Ondergrens CO2-prijs in 2 gradenscenario | -2,1 | -2,9 | -1,4 | -2,0  | -1,6  | 1,2  |
| Bovengrens CO2-prijs in 2 gradenscenario | 23,8 | 0,3  | 26,0 | 34,4  | 35,7  | 38,6 |

#### Vancouver indicative societal benefits

| Evaluation criteria                                                                                                                                                                                                 | Units                                                                                                                                                      | Regional congestion<br>point charges                     |                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------|
|                                                                                                                                                                                                                     |                                                                                                                                                            | Min                                                      | Min+                                                          |
| Economic benefits                                                                                                                                                                                                   |                                                                                                                                                            | $\bigcirc$                                               | $\bigcirc$                                                    |
| Total net economic benefits                                                                                                                                                                                         | \$ million/year                                                                                                                                            | \$220                                                    | \$290                                                         |
| Congestion                                                                                                                                                                                                          |                                                                                                                                                            |                                                          |                                                               |
| Total regional congested time savings                                                                                                                                                                               | % change from baseline in 2030                                                                                                                             | -20%                                                     | -25%                                                          |
| Travel time reliability                                                                                                                                                                                             | % change from baseline in 2030                                                                                                                             | 17%                                                      | 20%                                                           |
| Visible congested time savings⁵                                                                                                                                                                                     | % households that will achieve >10 mins savings per day                                                                                                    | 25%                                                      | 44%                                                           |
| Revenue                                                                                                                                                                                                             |                                                                                                                                                            |                                                          |                                                               |
| Total net revenue <sup>6</sup>                                                                                                                                                                                      | \$ million/year                                                                                                                                            | \$1,050                                                  | \$1,460                                                       |
|                                                                                                                                                                                                                     |                                                                                                                                                            |                                                          |                                                               |
| Evaluation criteria                                                                                                                                                                                                 | Units                                                                                                                                                      | Multi-zon<br>based                                       | e distance-<br>charges                                        |
| Evaluation criteria                                                                                                                                                                                                 | Units                                                                                                                                                      | Multi-zon<br>based                                       | e distance-<br>charges<br>Mint                                |
| Evaluation criteria<br>Economic benefits                                                                                                                                                                            | Units                                                                                                                                                      | Multi-zono<br>based<br>Min                               | e distance-<br>charges<br>Min+                                |
| Evaluation criteria<br>Economic benefits<br>Total net economic benefits                                                                                                                                             | Units<br>\$ million/year                                                                                                                                   | Multi-zon<br>based<br>Min<br>\$180                       | e distance-<br>charges<br>Min+<br>\$350                       |
| Evaluation criteria<br>Economic benefits<br>Total net economic benefits<br>Congestion                                                                                                                               | Units<br>\$ million/year                                                                                                                                   | Multi-zono<br>based<br>Min<br>\$180                      | e distance-<br>charges<br>Min+<br>\$350                       |
| Evaluation criteria<br>Economic benefits<br>Total net economic benefits<br>Congestion<br>Total regional congested time savings                                                                                      | Units Units \$ million/year % change from baseline in 2030                                                                                                 | Multi-zon<br>based<br>Min<br>\$180                       | e distance-<br>charges<br>Min+<br>\$350<br>-25%               |
| Evaluation criteria<br>Economic benefits<br>Total net economic benefits<br>Congestion<br>Total regional congested time savings<br>Travel time reliability                                                           | Units Units \$ million/year % change from baseline in 2030 % change from baseline in 2030                                                                  | Multi-zon<br>based<br>Min<br>\$180<br>-20%<br>18%        | e distance-<br>charges<br>Min+<br>\$350<br>-25%<br>23%        |
| Evaluation criteria<br>Economic benefits<br>Total net economic benefits<br>Congestion<br>Total regional congested time savings<br>Travel time reliability<br>Visible congested time savings <sup>9</sup>            | Units Units \$ million/year % change from baseline in 2030 % change from baseline in 2030 % households that will achieve >10 mins savings per day          | Multi-zon<br>based<br>Min<br>\$180<br>-20%<br>18%<br>25% | e distance-<br>charges<br>Min+<br>\$350<br>-25%<br>23%<br>41% |
| Evaluation criteria<br>Economic benefits<br>Total net economic benefits<br>Congestion<br>Total regional congested time savings<br>Travel time reliability<br>Visible congested time savings <sup>9</sup><br>Revenue | Units<br>\$ million/year<br>% change from baseline in 2030<br>% change from baseline in 2030<br>% households that will achieve<br>>10 mins savings per day | Multi-zon<br>based<br>Min<br>\$180<br>-20%<br>18%<br>25% | e distance-<br>charges<br>Min+<br>\$350<br>-25%<br>23%<br>41% |

Wednesday, 27 January 2021

## High system costs for distance based technology?

- The distance based charging policy in the Netherlands is to replace existing taxes in a revenu neutral way (about 16 billion Euro per year)
  - 2.3 billion Euro estimated investment costs for distance based charging in the Netherlands for a policy that applies to all vehicles
  - Operational and maintenance costs 750 million Euro per year for a policy that applies to all vehicles
  - These costs (5%-8% of revenues) replace a taxation system that has zero costs. Since demand decreases the remaining drivers see cost increases that are higher to preserve budget neutral outcomes
- Vancouver MPIC project reports higher percentages of gross revenues going to system costs for distance based (18%-40%) than for point based policy alternatives (11%-22%)

## Public opinion on distance based charging (Vancouver MPIC)

- There is a higher level of public support for charging that targets congestion (user cost) than for charging by use (user pay). By a two-to-one margin in the public polling, residents expressed a preference for user cost charging (49%) over user pay charging (25%). (Vancouver MPIC)
- Possible explanations
  - In time and place differentiated system it is harder to predict costs before making the trip
  - Privacy concerns based on OBU equipment
  - All trips are charged leaving no behavioural adaptation to avoid charging besides not using a car

## The national versus city perspective in the Netherlands

- Secure infrastructure funding as the primary objective
- Climate change and electrification
- Motorway congestion
- Changing from fixed to variable taxation (increases car ownership)

- Congestion and air quality are primary objectives
- Climate change
- Space, car ownership and parking and moving traffic through centers to ring road structures
- Investments in public transit and cycle infrastructure

The paradox is that the lower the charge, the more it can be described as a "tax grab" – only at relatively higher charges do the congestion benefits start to appear.

> Allan Seckel, Vancouver Mobility Pricing Independent Commission

#### For discussion: How could we transition?

- A logical end goal is to have differentiated distance based charging, in a multimodal context and with mobility services (a level 4 MaaS)
  - Wait or Demand from OEMs that new vehicles are distance based charging ready (no OBU is needed to enable distance based charging)
  - Start with addressing the transportation related problems around cities with ANPR/DSRC based cordon/area/point based charging policies
  - Use a low technology distance based tax solutions for EVs (or all vehicles) like periodic registration of kilometers travelled or within car insurance policies.

#### **Questions and discussion**

#### Dirk van Amelsfort, PhD

dvamelsfort@goudappel.nl

+31615903024

