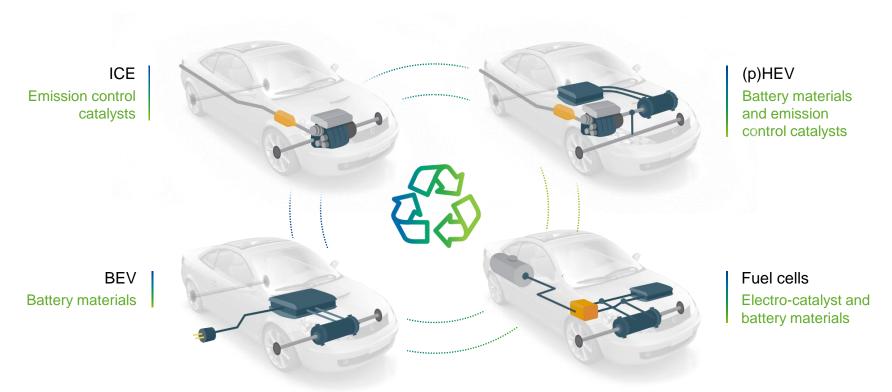


Who we are

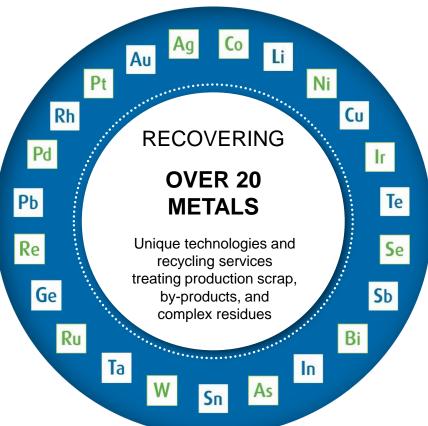
A global materials technology and recycling group

One of three global leaders in emission control catalysts for light-duty and heavy-duty vehicles and for all fuel types


A leading supplier of key materials for rechargeable batteries used in electrified transportation and portable electronics

The world's leading recycler of complex waste streams containing precious and other valuable metals

Unique position in clean mobility materials



Unique position

umicore

in recycling

Regulatory Framework ELV-Batteries

Ruled by two outdated Directives and one non-existing Regulation

- Batteries Directive → not designed for Li-ion batteries
- Ecodesign 'Batteries' Regulation → traceability to improve 2nd life and recycling

Merger?

End-of-Life Vehicles Directive

umicore

It's easy: remove the batteries

Regulatory uncertainty:

how to include battery recycling efficiency in the ELV-recycling target?

Removal of batteries is mentioned as a 'depollution' operation, not as an operation to 'promote recycling'

The first Mercedes HEV contained 600 kg of batteries → impact on ELV recycling target

HTTP://WWW.AUTOFANS.BE/REPORTAGES/VARIA/35453-ELEKTRO-DINOS-MERCEDES-W123-PLUG-HYBRID

Batteries Directive 2nd life or recycling?

Inauguration ESS system consisting of used EV-batteries (Umicore – Engie project)

Regulatory uncertainties:

- Batteries have to be recycled, but is 2nd life a way of recycling?
- Who has recycling obligations after 2nd life?

Batteries refurbished out of control of 1st producer → 2nd producer should take Extended Producer Responsibility

umicore

2nd Life: what about exported batteries?

- Export of 2nd hand materials is often a disguise for export of waste
- Even real 2nd hand materials have an end-of-life phase! Are we ready to take them back if no decent local recycling facilities would exist? Look what happens with WEEE and Pb-batteries!

Let's begin

A container designed by SolarTechno full of electricity had gone to a school complex in the interior of Cameroon. This container contains 90 solar panels, wiring and 320 refurbished battery cells with a total capacity of 48 kWh.

Recycling: is it a Battery or a Pack?

Regulatory uncertainty:

BD imposes a recyclingtarget of 50% w/w of the battery, excluding the 'pack' materials.

However, unclear whether an EV battery-pack is a Pack or a Battery?

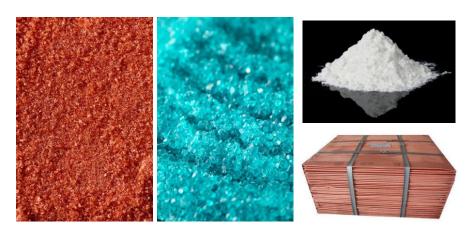
An EV battery (pack) consists of 60% w/w of cells; the other 40 % are steel, Al, Cu, electronics → after dismantling and sorting, easy to recycle. Are they counted for RE? If yes → low regulatory stimulant to recycle cells

Recycling Efficiency: quantity or quality?

Black mass from shredded batteries

50% losses during refining!

Regulatory uncertainty:


What is a qualified output fraction? End-of-Recycling criteria are unclear, confused with End-of-Waste

High RE-numbers can be obtained by reporting on intermediates with EoW status, containing O, C, H, that are emitted as H₂O and CO₂ in a later refining stage

Recycling Efficiency: quantity or quality?

Regulatory (lack of) ambition:

- 'how much' is a qualifier for collection
- 'what, how, yield' are qualifiers for recycling

Co-, Ni-, Li-salts and Cu cathodes

- Instead of 'high' but blunt RE-targets, the ambition should be to go for high yields for metals that matter, in processes with a low environmental impact
- From a Circular Economy perspective, the most important elements to recycle from EV-batteries are Co, Li, Ni and Cu.
- → industry standard, complementing a reviewed BD?

Eco-design Batteries (sustainability requirements)

Can this (future) Regulation contribute to battery recycling?

Regulatory draft:

- Traceability: whereabouts, use-profile
- Information: disassembly manual

https://flipthefleet.org/resources/nissan-owners-how-to-scan-your-battery/

Information on a need-to-know basis along the value chain. From a resource perspective, following information would be useful:

- primary sourcing (responsibly sourced materials?);
- state of health (suited for second life?);
- 1st producer and last owner (to know who has to hand in the battery to whom for recycling);
- dismantling instructions (not only to know, but also to oblige pack designer to think about disassembly)

Legislative framework End-of-Life treatment **Proposals**

ELV:

- Clear cut with BD: once a battery is removed from ELV → BD
- Don't include battery RE in ELV RE because other calculation method

BD:

- No-nonsense approach: circular economy as driver for recycling targets
 - Clear EPR-rules for 2nd life batteries
 - Specific RE for Li-ion batteries with focus on metals that matter
 - Distinction between EoW and EoR to ensure quality recycling

Ecodesign (sustainability requirements)

 Design a traceability system including essential information on EoLmanagement

materials for a better life