

Policy Options to Decarbonise Urban Passenger Transport

Results of expert opinion survey

Guineng Chen, ITF/OECD

19 April 2018

INTRODUCTION

The expert survey is part of the ITF Decarbonising Transport project's thematic work stream on urban passenger transport, aiming to

- Identify policy priorities, megatrends and pressing issues in this sector
- Gather initial evidence on the effectiveness of new urban mobility options and emerging technologies

The survey was sent to experts from the government, industry, civil society and academia etc.

- 116 experts replied, around 65% completed fully the questionnaire
- 85% of respondents European based, 15% are non-European based

URBAN TRANSPORT CHALLENGES

URBAN TRANSPORT CHALLENGES

□ Pressing urban challenges differ based on the level of development

URBAN TRANSPORT CHALLENGES

Environmental issues are the most pressing challenges in the middleand high-income countries

	Low-income	Middle-income	High-income
1	Accidents and safety issues	Environmental impacts and energy consumption	Environmental impacts and energy consumption
2	Low equity of accessibility	Traffic congestion and parking shortage	Traffic congestion and parking shortage
3	Inadequate public transport services	Accidents and safety issues	Long commuting times

URBAN POLICY PRIORITY

POLICY PRIORITY

Policy priorities for each country group vary significantly

Promoting active modes and shared mobility are consistent among all groups

POLICY PRIORITY

	Low-income	Middle-income	High-income
1	Transit improvements and incentives	Transit improvements and incentives	Promoting active modes
2	Land-use management strategies	Promoting active modes	Adopting shared mobility services
3	Promoting active modes	Land-use management strategies	Zero-emission vehicle programme
4	Adopting shared mobility services	Adopting shared mobility services	Low/Zero-emission zones

COST-EFFECTIVENESS OF MEASURES

COST-EFFECTIVENESS OF MEASURES - in reducing CO₂ emissions

Average ranking of cost and effectiveness [scale 1-10]

COST-EFFECTIVENESS OF MEASURES - in reducing CO₂ emissions

11

□Car restriction scheme is considered to be the most cost-effective

ZERO-EMISSION VEHICLE, ZONES

□On average, ZEV will take up less than 50% of the passenger car fleet by 2050

Expected penetration rate of ZEV

	Low-income	Middle-income	High-income
2030	Less than 10%	Between 10% and 30%	Between 20% and 40%
2050	Between 10% and 30%	Between 30% and 50%	Between 50% and 70%

□ Full-battery electric cars will take the highest share among the electric car fleet by 2050

Plug-in hybrid
Full-battery electric
Hydrogen fuel cell

Average price difference between an electric car and an internal combustion engine (ICE) car?

Expected price difference compared to ICE Car

 Prices of electric cars are expected to remain higher than ICE cars by 2050, despite the price gaps being reduced over time.

□Cost, charging facilities and vehicle performance are the top three barriers for the uptake of ZEVs

24%	Vehicle purchase cost
23%	Vehicle recharge time
20%	Availability of charging facilities
17%	Vehicle range
10%	Lack of strict emission regulations
7%	Consumer knowledge and awareness

ZERO-EMISSION ZONE

□ Cities in high-income countries are highly likely to implement ZEZ by 2050, whereas very unlikely for low-income cities

□When will shared mobility services have a significant mode share in cities? (e.g. > 10%)

□ Current Bus, Car, Taxi and Mass transit trips will be significantly replaced by shared mobility services by 2050

Bus will be affected the most by shared mobility, while NMT the least

Percentage of expert opinion

20

□ Could average trip cost of on-demand bus services become lower than the regular bus services?

Who is in the best position to lead a transition to shared mobility services? Should shared mobility be a public transport option managed by local transport authorities?

Yes

No

□Convenience and cultural barriers are top two barriers to the uptake of shared mobility services

□ By when do you think the autonomous cars will take a significant share of the urban passenger car fleet? (e.g. >20%)

□ Majority considers that autonomous cars will increase the overall

- Why do you choose <u>increasing</u>?
 - It will reduce travel and parking costs and provides improved mobility to those who are too young to drive or older people.

• Why do you choose <u>decreasing</u>?

 It will reduce the car use by being more efficient at completing the tasks drivers currently perform. More car-sharing is also expected.

• Why do you choose <u>no impact</u>?

 Other modes will also adopt automation technology to compete with autonomous car, thus offsets the growth potential of autonomous private car use.

Would you limit the increasing car use brought by autonomous car? (increase in trip distances and trip rates)

How would you limit this effect?

QAutonomous cars have higher impacts on bus than on mass transit

□ If autonomous cars are shared, the impacts on public transport trips will be higher

Percentage of expert opinion

□Safety and security concerns appears to be the biggest barrier for the uptake of autonomous cars

26%	Safety and security issues
22%	Technological challenges
20%	Legislation and regulatory issues
16%	Consumer acceptance
16%	High vehicle purchase cost

CONCLUSIONS

- TAILOR the decarbonising pathways to the climate and development priorities of different country groups
- MAXIMISE the co-benefits from CO₂ mitigation strategies, especially for the low-income countries (safety, accessibility, equity)
- TRANSIT to Zero-Emission Vehicles (cheaper and better performance) to achieve the decarbonising goal
- INTEGRATE shared mobility into multimodal transport planning to reduce emissions from urban mobility and meet public goals
- TACKLE the challenges of combining realistic behavioural factors towards autonomous cars and policy options that cities might pursue