Causal inference for ex-post evaluation of transport interventions

Dan Graham
Professor of Statistical Modelling

Centre for Transport Studies
d.j.graham@imperial.ac.uk
Introduction: ex-post evaluation
Introduction: ex-post evaluation

Paper is concerned with ex-post evaluation of transport interventions (i.e. schemes, investments, regulations, policies etc)
Introduction: ex-post evaluation

Paper is concerned with ex-post evaluation of transport interventions (i.e. schemes, investments, regulations, policies etc).

Ex-post evaluation can inform decisions on
Introduction: ex-post evaluation

Paper is concerned with ex-post evaluation of transport interventions (i.e. schemes, investments, regulations, policies etc).

Ex-post evaluation can inform decisions on

★ **Value for money** - study the performance of past interventions
Introduction: ex-post evaluation

Paper is concerned with ex-post evaluation of transport interventions (i.e. schemes, investments, regulations, policies etc)

Ex-post evaluation can inform decisions on

- **Value for money** - study the performance of past interventions
- **Resource allocation** - forecast the impacts of future interventions on the basis of past experience
Introduction: ex-post evaluation

Paper is concerned with ex-post evaluation of transport interventions (i.e. schemes, investments, regulations, policies etc)

Ex-post evaluation can inform decisions on

★ **Value for money** - study the performance of past interventions

★ **Resource allocation** - forecast the impacts of future interventions on the basis of past experience

We can conduct ex-post evaluation via
Introduction: ex-post evaluation

Paper is concerned with ex-post evaluation of transport interventions (i.e. schemes, investments, regulations, policies etc)

Ex-post evaluation can inform decisions on

- **Value for money** - study the performance of past interventions
- **Resource allocation** - forecast the impacts of future interventions on the basis of past experience

We can conduct ex-post evaluation via

1. **Cost Benefit Analysis (CBA)** - using ‘real’ rather than predicted values for time saving, demand changes, prices, costs, revenues etc
Introduction: ex-post evaluation

Paper is concerned with ex-post evaluation of transport interventions (i.e. schemes, investments, regulations, policies etc).

Ex-post evaluation can inform decisions on

- **Value for money** - study the performance of past interventions
- **Resource allocation** - forecast the impacts of future interventions on the basis of past experience

We can conduct ex-post evaluation via

1. **Cost Benefit Analysis (CBA)** - using ‘real’ rather than predicted values for time saving, demand changes, prices, costs, revenues etc
2. **Case studies** - detailed empirical before and after comparisons for individual schemes
Introduction: ex-post evaluation

Paper is concerned with ex-post evaluation of transport interventions (i.e. schemes, investments, regulations, policies etc)

Ex-post evaluation can inform decisions on

★ **Value for money** - study the performance of past interventions
★ **Resource allocation** - forecast the impacts of future interventions on the basis of past experience

We can conduct ex-post evaluation via

1. **Cost Benefit Analysis (CBA)** - using ‘real’ rather than predicted values for time saving, demand changes, prices, costs, revenues etc

2. **Case studies** - detailed empirical before and after comparisons for individual schemes

3. **Statistical modelling** - applying statistical models to available data to infer the **causal** impacts of interventions
Introduction: ex-post evaluation

Paper is concerned with ex-post evaluation of transport interventions (i.e. schemes, investments, regulations, policies etc).

Ex-post evaluation can inform decisions on

- **Value for money** - study the performance of past interventions
- **Resource allocation** - forecast the impacts of future interventions on the basis of past experience

We can conduct ex-post evaluation via

1. **Cost Benefit Analysis (CBA)** - using ‘real’ rather than predicted values for time saving, demand changes, prices, costs, revenues etc.
2. **Case studies** - detailed empirical before and after comparisons for individual schemes
3. **Statistical modelling** - applying statistical models to available data to infer the **causal** impacts of interventions

Focus on **statistical modelling** approaches for **causal inference**
Why is ‘causality’ relevant?
Why is ‘causality’ relevant?

Transport interventions are fundamentally designed to manipulate cause-effect relationships.
Why is ‘causality’ relevant?

Transport interventions are fundamentally designed to manipulate cause-effect relationships

★ Fuel taxation to reduce transport emissions
★ Congestion charging to reduce traffic volumes
★ Road cameras to reduce speeds / mitigate accidents
★ Infrastructure investment to boost the productivity of the economy
★ Public transport upgrades to improve network performance
Why is ‘causality’ relevant?

Transport interventions are fundamentally designed to manipulate **cause-effect** relationships

- Fuel taxation to reduce transport emissions
- Congestion charging to reduce traffic volumes
- Road cameras to reduce speeds / mitigate accidents
- Infrastructure investment to boost the productivity of the economy
- Public transport upgrades to improve network performance

Causality implies a comparison of **outcomes** under intervention relative to some other scenario (i.e. do-nothing)
Why is ‘causality’ relevant?

Transport interventions are fundamentally designed to manipulate cause-effect relationships

- Fuel taxation to reduce transport emissions
- Congestion charging to reduce traffic volumes
- Road cameras to reduce speeds / mitigate accidents
- Infrastructure investment to boost the productivity of the economy
- Public transport upgrades to improve network performance

Causality implies a comparison of outcomes under intervention relative to some other scenario (i.e. do-nothing)

Research challenge: use observed data linking interventions with outcomes to quantify cause-effect relationships
Causal inference models in statistics
Causal inference models in statistics

The need for causal data analysis across many areas of science motivated the study of causal inference within statistics
Causal inference models in statistics

The need for causal data analysis across many areas of science motivated the study of causal inference within statistics.

The causal inference problem would be straightforward given either
Causal inference models in statistics

The need for causal data analysis across many areas of science motivated the study of causal inference within statistics.

The causal inference problem would be straightforward given either

1. **Full data** - outcomes under intervention and any other chosen scenarios are observed allowing for direct comparison.
Causal inference models in statistics

The need for causal data analysis across many areas of science motivated the study of causal inference within statistics.

The causal inference problem would be straightforward given either

1. **Full data** - outcomes under intervention and any other chosen scenarios are observed allowing for direct comparison
 * i.e. *same network with and without congestion charging*
Causal inference models in statistics

The need for causal data analysis across many areas of science motivated the study of causal inference within statistics.

The causal inference problem would be straightforward given either:

1. **Full data** - outcomes under intervention and any other chosen scenarios are observed allowing for direct comparison.
 * i.e. same network with and without congestion charging

2. **Experimental evidence** - random assignment of interventions allows causal effects to be quantified by comparing averages.
Causal inference models in statistics

The need for causal data analysis across many areas of science motivated the study of **causal inference** within statistics.

The causal inference problem would be straightforward given either

1. **Full data** - outcomes under intervention and any other chosen scenarios are observed allowing for direct comparison
 - *i.e. same network with and without congestion charging*

2. **Experimental evidence** - random assignment of interventions allows causal effects to be quantified by comparing averages
 - *i.e. mean accidents from speed camera sites vs mean accidents from sites without speed camera*
Causal inference models in statistics

The need for causal data analysis across many areas of science motivated the study of causal inference within statistics.

The causal inference problem would be straightforward given either:

1. **Full data** - outcomes under intervention and any other chosen scenarios are observed allowing for direct comparison.
 - *i.e. same network with and without congestion charging*

2. **Experimental evidence** - random assignment of interventions allows causal effects to be quantified by comparing averages.
 - *i.e. mean accidents from speed camera sites vs mean accidents from sites without speed camera*

In practice, the observed data typically do not fulfill these criteria: we have incomplete data and confounding.
Statistical solutions for causal inference
Statistical solutions for causal inference

The key objective is to capture the **marginal** effect of the intervention on some defined outcome, net of other influences.
Statistical solutions for causal inference

The key objective is to capture the **marginal** effect of the intervention on some defined outcome, net of other influences.

Paper describes various methods, and assumptions that must be met, to draw valid causal inference.
Statistical solutions for causal inference

The key objective is to capture the **marginal** effect of the intervention on some defined outcome, net of other influences.

Paper describes various methods, and assumptions that must be met, to draw valid casual inference.

Statistical solutions focus on:
Statistical solutions for causal inference

The key objective is to capture the **marginal** effect of the intervention on some defined outcome, net of other influences.

Paper describes various methods, and assumptions that must be met, to draw valid casual inference.

Statistical solutions focus on:

i. **Imputing full data** - use observed data to model counterfactual outcomes.
Statistical solutions for causal inference

The key objective is to capture the marginal effect of the intervention on some defined outcome, net of other influences.

Paper describes various methods, and assumptions that must be met, to draw valid causal inference.

Statistical solutions focus on:

i. **Imputing full data** - use observed data to model counterfactual outcomes.

ii. **Simulating random treatment assignment** - adjust for confounding to mimic a pseudo-random assignment.
Statistical solutions for causal inference

The key objective is to capture the **marginal** effect of the intervention on some defined outcome, net of other influences.

Paper describes various methods, and assumptions that must be met, to draw valid casual inference.

Statistical solutions focus on:

i. **Imputing full data** - use observed data to model counterfactual outcomes

ii. **Simulating random treatment assignment** - adjust for confounding to mimic a pseudo-random assignment

In this talk we use two case studies to demonstrate causal inference techniques.
Statistical solutions for causal inference

The key objective is to capture the **marginal** effect of the intervention on some defined outcome, net of other influences.

Paper describes various methods, and assumptions that must be met, to draw valid casual inference.

Statistical solutions focus on:

1. **Imputing full data** - use observed data to model counterfactual outcomes.

2. **Simulating random treatment assignment** - adjust for confounding to mimic a pseudo-random assignment.

In this talk we use two case studies to demonstrate causal inference techniques:

1. *Impacts of urban road network capacity expansions in the US*
Statistical solutions for causal inference

The key objective is to capture the **marginal** effect of the intervention on some defined outcome, net of other influences.

Paper describes various methods, and assumptions that must be met, to draw valid casual inference.

Statistical solutions focus on:

i. **Imputing full data** - use observed data to model counterfactual outcomes.

ii. **Simulating random treatment assignment** - adjust for confounding to mimic a pseudo-random assignment.

In this talk we use two case studies to demonstrate causal inference techniques:

1. *Impacts of urban road network capacity expansions in the US*
2. *Regional economic impacts of High Speed Rail investments in Spain*
Case study 1: impacts of urban road capacity expansions

TTI urban mobility data on road traffic conditions for 101 US cities (1982-2007)
Background and objectives
Background and objectives

Background: road capacity expansions have consequences for
Background and objectives

Background: road capacity expansions have consequences for
- traffic volumes (e.g. ‘induced’ demand),
Background and objectives

Background: road capacity expansions have consequences for

- traffic volumes (e.g. ‘induced’ demand),
- network performance (e.g. speeds, travel times, flow, density etc)
Background and objectives

Background: road capacity expansions have consequences for

☆ traffic volumes (e.g. ‘induced’ demand),

☆ network performance (e.g. speeds, travel times, flow, density etc)

☆ economy and productivity (e.g. GVA, wages, TFP, growth etc)
Background and objectives

Background: road capacity expansions have consequences for
- traffic volumes (e.g. ‘induced’ demand),
- network performance (e.g. speeds, travel times, flow, density etc)
- economy and productivity (e.g. GVA, wages, TFP, growth etc)

Contribution: a statistical approach for ex-post evaluation
Background and objectives

Background: road capacity expansions have consequences for

- traffic volumes (e.g. ‘induced’ demand),
- network performance (e.g. speeds, travel times, flow, density etc)
- economy and productivity (e.g. GVA, wages, TFP, growth etc)

Contribution: a statistical approach for ex-post evaluation

- provides a unified framework to assess *relative* effects of capacity expansions on demand, network performance, and productivity
Background and objectives

Background: Road capacity expansions have consequences for
- traffic volumes (e.g. ‘induced’ demand),
- network performance (e.g. speeds, travel times, flow, density etc)
- economy and productivity (e.g. GVA, wages, TFP, growth etc)

Contribution: A statistical approach for ex-post evaluation
- provides a unified framework to assess *relative* effects of capacity expansions on demand, network performance, and productivity
- addresses key empirical problems cited in existing work
Background and objectives

Background: road capacity expansions have consequences for

- traffic volumes (e.g. ‘induced’ demand),
- network performance (e.g. speeds, travel times, flow, density etc)
- economy and productivity (e.g. GVA, wages, TFP, growth etc)

Contribution: a statistical approach for ex-post evaluation

- provides a unified framework to assess relative effects of capacity expansions on demand, network performance, and productivity
- addresses key empirical problems cited in existing work

Results: quantify changes in ‘responses’ (i.e demand, performance, productivity) caused by treatments (i.e amount of capacity expansion) net of confounding effects
Ex-post evaluation via causal ATE estimation
Ex-post evaluation via causal ATE estimation

Set-up: observed data $z_i = (y_i, d_i, x_i)$, $i = 1, ..., n$, where y_i is a response, d_i is treatment (dose), and x_i is a vector of covariates.
Ex-post evaluation via causal ATE estimation

Set-up: observed data \(z_i = (y_i, d_i, x_i), i = 1, ..., n \), where \(y_i \) is a response, \(d_i \) is treatment (dose), and \(x_i \) is a vector of covariates

Target of inference: we want to estimate Average Treatment Effects (ATEs)

\[
\tau(d^*) = \mathbb{E}[Y(d^*)] - \mathbb{E}[Y(0)]
\]

for all doses \(d^* \in D \subseteq \mathbb{R} \) of interest.
Ex-post evaluation via causal ATE estimation

Set-up: observed data $z_i = (y_i, d_i, x_i)$, $i = 1, ..., n$, where y_i is a response, d_i is treatment (dose), and x_i is a vector of covariates.

Target of inference: we want to estimate Average Treatment Effects (ATEs)

$$\tau(d^*) = \mathbb{E}[Y(d^*)] - \mathbb{E}[Y(0)]$$

for all doses $d^* \in \mathcal{D} \subseteq \mathbb{R}$ of interest.

But we have incomplete data and confounding.
Ex-post evaluation via causal ATE estimation

Set-up: observed data $z_i = (y_i, d_i, x_i)$, $i = 1, \ldots, n$, where y_i is a response, d_i is treatment (dose), and x_i is a vector of covariates.

Target of inference: we want to estimate Average Treatment Effects (ATEs)

$$
\tau(d^*) = \mathbb{E}[Y(d^*)] - \mathbb{E}[Y(0)]
$$

for all doses $d^* \in D \subseteq \mathbb{R}$ of interest.

But we have incomplete data and confounding.

To adjust for confounding we model the treatment assignment mechanism to simulate a randomised design.
Ex-post evaluation via causal ATE estimation

Set-up: observed data \(z_i = (y_i, d_i, x_i), i = 1, ..., n \), where \(y_i \) is a response, \(d_i \) is treatment (dose), and \(x_i \) is a vector of covariates.

Target of inference: we want to estimate Average Treatment Effects (ATEs)

\[
\tau(d^*) = \mathbb{E}[Y(d^*)] - \mathbb{E}[Y(0)]
\]

for all doses \(d^* \in \mathcal{D} \subseteq \mathbb{R} \) of interest.

But we have incomplete data and confounding.

To adjust for confounding we model the treatment assignment mechanism to simulate a randomised design.

This is done by calculating **generalised propensity scores**
Generalised Propensity Score (GPS) adjustment
Generalised Propensity Score (GPS) adjustment

The GPS measures the conditional probability of assignment to treatment given confounders

$$\pi(d^*|X; \alpha) = \Pr(D = d^*|X = x)$$
Generalised Propensity Score (GPS) adjustment

The GPS measures the conditional probability of assignment to treatment given confounders

\[\pi(d^*|X; \alpha) = \Pr(D = d^*|X = x) \]

Under random assignment all units have an equal probability of treatment
Generalised Propensity Score (GPS) adjustment

The GPS measures the conditional probability of assignment to treatment given confounders

$$\pi(d^*|X; \alpha) = \Pr(D = d^*|X = x)$$

Under random assignment all units have an equal probability of treatment

We can use the GPS conditional probability values to create a \textit{pseudo-sample} that simulates random assignment
Generalised Propensity Score (GPS) adjustment

The GPS measures the conditional probability of assignment to treatment given confounders

$$\pi(d^*|X; \alpha) = \Pr(D = d^*|X = x)$$

Under random assignment all units have an equal probability of treatment

We can use the GPS conditional probability values to create a pseudo-sample that simulates random assignment

This is achieved via a four step approach
Generalised Propensity Score (GPS) adjustment

The GPS measures the conditional probability of assignment to treatment given confounders

$$\pi(d^*|X; \alpha) = \Pr(D = d^*|X = x)$$

Under random assignment all units have an equal probability of treatment

We can use the GPS conditional probability values to create a *pseudo-sample* that simulates random assignment

This is achieved via a four step approach

i. Estimate the GPSs using a flexible model: \(\hat{\pi}(d|X; \hat{\alpha}) \)
Generalised Propensity Score (GPS) adjustment

The GPS measures the conditional probability of assignment to treatment given confounders

$$\pi(d^* | X; \alpha) = \Pr(D = d^* | X = x)$$

Under random assignment all units have an equal probability of treatment

We can use the GPS conditional probability values to create a pseudo-sample that simulates random assignment

This is achieved via a four step approach

i. Estimate the GPSs using a flexible model: $\hat{\pi}(d|X; \hat{\alpha})$

ii. Adjust for confounding via a mean response model: $\mathbb{E}[Y|D, \hat{\pi}(d|X; \hat{\alpha}); \beta]$
Generalised Propensity Score (GPS) adjustment

The GPS measures the conditional probability of assignment to treatment given confounders

$$\pi(d^* | X; \alpha) = \Pr(D = d^* | X = x)$$

Under random assignment all units have an equal probability of treatment

We can use the GPS conditional probability values to create a *pseudo-sample* that simulates random assignment

This is achieved via a four step approach

i. Estimate the GPSs using a flexible model: $\hat{\pi}(d | X ; \hat{\alpha})$

ii. Adjust for confounding via a mean response model: $\mathbb{E}[Y | D, \hat{\pi}(d | X ; \hat{\alpha}); \beta]$

iii. Use $\hat{\beta}$ to calculate expected response at dose d^*

$$\hat{\mu}(d^*) = \mathbb{E}[Y(d^*)] = \mathbb{E}_X \left[\mathbb{E}(Y | d^*, \hat{\pi}(d^* | X ; \hat{\alpha}); \hat{\beta}) \right],$$

and repeat for all doses of interest.
Generalised Propensity Score (GPS) adjustment

The GPS measures the conditional probability of assignment to treatment given confounders

\[\pi(d^* | X; \alpha) = \Pr(D = d^* | X = x) \]

Under random assignment all units have an equal probability of treatment

We can use the GPS conditional probability values to create a pseudo-sample that simulates random assignment

This is achieved via a four step approach

i. Estimate the GPSs using a flexible model: \(\hat{\pi}(d | X; \hat{\alpha}) \)

ii. Adjust for confounding via a mean response model: \(\mathbb{E}[Y | D, \hat{\pi}(d | X; \hat{\alpha}); \beta] \)

iii. Use \(\hat{\beta} \) to calculate expected response at dose \(d^* \)

\[\hat{\mu}(d^*) = \mathbb{E}[Y(d^*)] = \mathbb{E}_X \left[\mathbb{E}(Y(d^*), \hat{\pi}(d^* | X; \hat{\alpha}); \hat{\beta}) \right] , \]

and repeat for all doses of interest.

iv. Calculate ATEs: \(\hat{\tau}(d^*) = \hat{\mu}(d^*) - \hat{\mu}(0) \), using (block) bootstrap for variance estimation
Advantages of the causal GPS approach
Advantages of the causal GPS approach

* Clearly defined ‘causal’ framework based on 3 key empirical components: response, treatment, confounders
Advantages of the causal GPS approach

★ Clearly defined ‘causal’ framework based on 3 key empirical components: response, treatment, confounders

★ Circumvents need for a comprehensive theoretical model, though theory informs selection of confounders
Advantages of the causal GPS approach

- Clearly defined ‘causal’ framework based on 3 key empirical components: response, treatment, confounders
- Circumvents need for a comprehensive theoretical model, though theory informs selection of confounders
- Approach can estimate ATEs across multiple doses rather than a single point estimate
Advantages of the causal GPS approach

★ Clearly defined ‘causal’ framework based on 3 key empirical components: response, treatment, confounders

★ Circumvents need for a comprehensive theoretical model, though theory informs selection of confounders

★ Approach can estimate ATEs across multiple doses rather than a single point estimate

★ Modelling with a scalar PS, rather than high-dimensional X, allows use of flexible forms (i.e. GAMs and high-order polynomial)
Advantages of the causal GPS approach

- Clearly defined ‘causal’ framework based on 3 key empirical components: response, treatment, confounders
- Circumvents need for a comprehensive theoretical model, though theory informs selection of confounders
- Approach can estimate ATEs across multiple doses rather than a single point estimate
- Modelling with a scalar PS, rather than high-dimensional X, allows use of flexible forms (i.e. GAMs and high-order polynomial)
- GPS can be used to form a number of ATE estimators via weighting, matching, or regression (combine for doubly robust)
Advantages of the causal GPS approach

- Clearly defined ‘causal’ framework based on 3 key empirical components: response, treatment, confounders
- Circumvents need for a comprehensive theoretical model, though theory informs selection of confounders
- Approach can estimate ATEs across multiple doses rather than a single point estimate
- Modelling with a scalar PS, rather than high-dimensional X, allows use of flexible forms (i.e. GAMs and high-order polynomial)
- GPS can be used to form a number of ATE estimators via weighting, matching, or regression (combine for doubly robust)
- A **longitudinal mixed model extension** of the GPS can address *unobserved effects* and *bi-directional causality* between response and treatment by subsuming these effects within the GPS
Methodological contribution of the paper

ATE estimates are unbiased if the estimated GPS consistently estimates the true GPS

A necessary condition is that X is sufficient to represent confounding

We show that with longitudinal data the GPS can be estimated via a mixed model approach to address

- **Unmeasured confounding:** condition on unit level random effects, or correlated random effects, to adjust for unobserved time-invariant confounding: $\hat{\pi}(d^* | x_{it}, u_i; \hat{\alpha})$

- **Reverse causality:** condition on lagged values of the response y_{it-p}, or the response history $\mathcal{H}^y_{i,t-1}$, to allow for endogeneity from reverse causation: $\hat{\pi}(d^* | x_{it}, u_i, \mathcal{H}^y_{i,t-1}; \hat{\alpha})$

- **Dynamic assignment:** include lagged values of the treatment $d_{i,t-p}$, or treatment history $\mathcal{H}^d_{i,t-1}$, to represent the dynamic nature of assignment: $\hat{\pi}(d^* | x_{it}, u_i, \mathcal{H}^y_{i,t-1}, \mathcal{H}^d_{i,t-1}; \hat{\alpha})$
Algorithm for ATE estimation via mixed GPS model

1. Use a flexible mixed model (i.e. GAMM) to estimate $f_{D|X}(d|x, u; \alpha)$

2. Use $\hat{\alpha}$, with the appropriate density function, to calculate the GPSs: $\hat{\pi}(d^*|x, u; \hat{\alpha})$, for all d^* of interest

3. Ensure common support by selecting only units which have a reasonable probability of being treated across the range of dose

4. Estimate $\mathbb{E}(Y|D, \hat{\pi}(d|x, u; \hat{\alpha}))$ using a penalised spline model

5. Average over predicted values from 4., evaluated at at dose d^*, to obtain a point estimate of the expected response at d^*: $\hat{\mu}(d^*)$

6. Repeat for all dose of interest, form the dose-response curve, and estimate ATEs:

 $$\hat{\tau}(d^*) = \hat{\mu}(d^*) - \hat{\mu}(0)$$

7. Use a single (block) bootstrap re-sampling scheme over 1. to 6. to obtain standard errors
Urban longitudinal data (TTI and MSA)

- **Responses:** annual proportional change in traffic volume (vmt), network performance (delay per vmt), and productivity (average wage)

- **Treatment:** annual proportional change in network lane miles (freeway and arterial)

- **Pre-treatment covariates (confounders):**
 - Lagged responses: to capture reverse causality
 - Congestion & traffic volume: measured by delay and vmt
 - Network scale & mix: network length, mix of freeway / arterial
 - Traffic mix: volume on freeway / arterial
 - Mode characteristics: public transport patronage, state fuel price
 - Economy: productivity, income and economic structure
 - Employment and population distribution and growth

- **Unobserved confounders:** physical characteristics, geographical features, aspects of road network design, activity/travel behaviour patterns
 - Random city-level effects specified in longitudinal mixed models

- **Models:** Normal GAMMs for all sub models
Results: traffic volumes (vmt)

![Graph showing traffic volumes (vmt) vs. capacity expansion (%). The x-axis represents capacity expansion (%) ranging from 1 to 5, and the y-axis represents average treatment effect (%) ranging from -2 to 6. The graph shows a positive correlation between capacity expansion and average treatment effect.]
Results: traffic volumes (vmt)

* evidence of induced demand over the range of dose having adjusted for confounding
Results: traffic volumes (vmt)

- evidence of induced demand over the range of dose having adjusted for confounding
- $\text{ATE} > $ proportional to treatment for doses ≤ 2
Results: traffic volumes (vmt)

- evidence of induced demand over the range of dose having adjusted for confounding
- ATE > proportional to treatment for doses \(\leq 2 \)
- on average 10% increase in lane miles \(\rightarrow 9\% \)
 increase in vmt net of ‘natural growth’ (estimated 1.4% p.a.)
Results: traffic volumes (vmt)

- Evidence of induced demand over the range of dose having adjusted for confounding
- ATE > proportional to treatment for doses ≤ 2
- On average 10% increase in lane miles → 9% increase in vmt net of ‘natural growth’ (estimated 1.4% p.a.)
- Capacity expansions in the range considered have not in general reduced traffic density (vol. / cap.)
Results: network performance (delay per vmt)
Results: network performance (delay per vmt)

* capacity expansions have not ameliorated urban congestion
Results: network performance (delay per vmt)

* capacity expansions have not ameliorated urban congestion
* average road user has not experienced reduced delay
Results: network performance (delay per vmt)

รายละเอียด:

- ความเร็วของเครือข่าย (delay per vmt)

- ค่าอัตราการขยายความสามารถ (Capacity Expansion (%))
- อัตราผลประโยชน์เฉลี่ย (Average Treatment Effect (%))

★ ความต่อเนื่องของการขยายความสามารถไม่ได้แกวการจราจรในเมือง
★ ผู้ใช้ทางถนนทั่วไปไม่ได้รับความปลอดภัยในการจราจร
★ ต้นทุนรวมของความต่ำต้านการจราจรเพิ่มขึ้น

![Graph showing network performance results](image-url)
Results: network performance (delay per vmt)

- capacity expansions have not ameliorated urban congestion
- average road user has not experienced reduced delay
- aggregate cost of congestion has increased
- no statistically significant effects on delay per vmt
Results: network performance (delay per vmt)

- Capacity expansions have not ameliorated urban congestion
- Average road user has not experienced reduced delay
- Aggregate cost of congestion has increased
- No statistically significant effects on delay per vmt
- This is the case even for large capacity expansions
Results: network performance (delay per vmt)

- capacity expansions have not ameliorated urban congestion
- average road user has not experienced reduced delay
- aggregate cost of congestion has increased
- no statistically significant effects on delay per vmt
- this is the case even for large capacity expansions
- due to natural growth congestion worsens further (approx. 3% p.a.)
Results: productivity (average MSA wage)
Results: productivity (average MSA wage)

urban road network expansions have not induced higher productivity
Results: productivity (average MSA wage)

- urban road network expansions have not induced higher productivity
- ‘naive’ regressions of productivity on treatment do indicate a +ve association
Results: productivity (average MSA wage)

- Urban road network expansions have not induced higher productivity.
- ‘Naive’ regressions of productivity on treatment do indicate a positive association.
- But no significant ATEs having isolated a viable sample and adjusted for confounding.
Results: productivity (average MSA wage)

- Urban road network expansions have not induced higher productivity
- ‘Naive’ regressions of productivity on treatment do indicate a positive association
- But no significant ATEs having isolated a viable sample and adjusted for confounding
- No fall in interaction costs and apparently no scale effects
Case study 1: conclusions
Case study 1: conclusions

Causal mixed model GPS approach provides a highly flexible framework for ex-post evaluation of transport interventions
Case study 1: conclusions

Causal mixed model GPS approach provides a highly flexible framework for ex-post evaluation of transport interventions.

Model indicates that urban road network expansions have induced demand but have not ameliorated congestion or raised productivity.
Case study 1: conclusions

Causal mixed model GPS approach provides a highly flexible framework for ex-post evaluation of transport interventions

Model indicates that urban road network expansions have induced demand but have not ameliorated congestion or raised productivity

Results do not imply that there are no economic benefits from road capacity expansions per se:
Case study 1: conclusions

Causal mixed model GPS approach provides a highly flexible framework for ex-post evaluation of transport interventions.

Model indicates that urban road network expansions have induced demand but have not ameliorated congestion or raised productivity.

Results do not imply that there are no economic benefits from road capacity expansions per se:

- results specific to marginal changes on mature congested urban networks.
Case study 1: conclusions

Causal mixed model GPS approach provides a highly flexible framework for ex-post evaluation of transport interventions.

Model indicates that urban road network expansions have induced demand but have not ameliorated congestion or raised productivity.

Results do not imply that there are no economic benefits from road capacity expansions per se:

- Results specific to marginal changes on mature congested urban networks
- Increased mobility with aggregate volume / capacity ratios constant
Case study 1: conclusions

Causal mixed model GPS approach provides a highly flexible framework for ex-post evaluation of transport interventions

Model indicates that urban road network expansions have induced demand but have not ameliorated congestion or raised productivity

Results do not imply that there are no economic benefits from road capacity expansions per se:

★ results specific to marginal changes on mature congested urban networks
★ increased mobility with aggregate volume / capacity ratios constant
★ network generalised costs do not improve and total urban delay rises
Case study 1: conclusions

Causal mixed model GPS approach provides a highly flexible framework for ex-post evaluation of transport interventions

Model indicates that urban road network expansions have induced demand but have not ameliorated congestion or raised productivity

Results do not imply that there are no economic benefits from road capacity expansions per se:

★ results specific to marginal changes on mature congested urban networks
★ increased mobility with aggregate volume / capacity ratios constant
★ network generalised costs do not improve and total urban delay rises
★ the scale (increased traffic) effect does not appear to influence productivity (either +ve or -ve)
Case study 1: conclusions

Causal mixed model GPS approach provides a highly flexible framework for ex-post evaluation of transport interventions

Model indicates that urban road network expansions have induced demand but have not ameliorated congestion or raised productivity

Results do not imply that there are no economic benefits from road capacity expansions per se:

- results specific to marginal changes on mature congested urban networks
- increased mobility with aggregate volume / capacity ratios constant
- network generalised costs do not improve and total urban delay rises
- the scale (increased traffic) effect does not appear to influence productivity (either +ve or -ve)

To improve urban road network performance and raise productivity a combination of efficient pricing with investment in both roads and mass transit may be more effective
The problem of confounding

The relationship between capacity and productivity is **confounded** by a set of city characteristics which

- Are important for productivity
- Influence the level of capacity expansion received