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⋆ Resource allocation - forecast the impacts of future interventions
on the basis of past experience

We can conduct ex-post evaluation via

1. Cost Benefit Analysis (CBA) - using ‘real’ rather than predicted
values for time saving, demand changes, prices, costs, revenues etc

2. Case studies - detailed empirical before and after comparisons for
individual schemes

3. Statistical modelling - applying statistical models to available data
to infer the causal impacts of interventions

Focus on statistical modelling approaches for causal inference
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⋆ Road cameras to reduce speeds / mitigate accidents

⋆ Infrastructure investment to boost the productivity of the economy

⋆ Public transport upgrades to improve network performance

Causality implies a comparison of outcomes under intervention relative
to some other scenario (i.e. do-nothing)

Research challenge: use observed data linking interventions with
outcomes to quantify cause-effect relationships
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motivated the study of causal inference within statistics

The causal inference problem would be straightforward given either

1. Full data - outcomes under intervention and any other
chosen scenarios are observed allowing for direct comparison

⋆ i.e. same network with and without congestion charging

2. Experimental evidence - random assignment of interventions
allows causal effects to be quantified by comparing averages

⋆ i.e. mean accidents from speed camera sites vs mean accidents from

sites without speed camera

In practice the observed data typically do to fulfil these criteria:
we have incomplete data and confounding
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Statistical solutions focus on:

i. Imputing full data - use observed data to model counterfactual
outcomes

ii. Simulating random treatment assignment - adjust for
confounding to mimic a pseudo-random assignment

In this talk we use two case studies to demonstrate causal inference
techniques

1. Impacts of urban road network capacity expansions in the US

2. Regional economic impacts of High Speed Rail investments in Spain
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Case study 1: impacts of urban road capacity expansions

TTI urban mobility data on road traffic conditions for 101 US
cities (1982-2007)
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⋆ network performance (e.g. speeds, travel times, flow, density etc)

⋆ economy and productivity (e.g. GVA, wages, TFP, growth etc)

Contribution: a statistical approach for ex-post evaluation

⋆ provides a unified framework to assess relative effects of capacity
expansions on demand, network performance, and productivity

⋆ addresses key empirical problems cited in existing work

Results: quantify changes in ‘responses’ (i.e demand, performance,
productivity) caused by treatments (i.e amount of capacity expansion)
net of confounding effects
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τ(d∗) = E [Y (d∗)]− E [Y (0)]

for all doses d∗ ∈ D ⊆ R of interest.

But we have incomplete data and confounding example

To adjust for confounding we model the treatment assignment
mechanism to simulate a randomised design

This is done by calculating generalised propensity scores

7 / 16



Generalised Propensity Score (GPS) adjustment

8 / 16



Generalised Propensity Score (GPS) adjustment

The GPS measures the conditional probability of assignment to
treatment given confounders

π(d∗|X ;α) = Pr(D = d∗|X = x)

8 / 16



Generalised Propensity Score (GPS) adjustment

The GPS measures the conditional probability of assignment to
treatment given confounders

π(d∗|X ;α) = Pr(D = d∗|X = x)

Under random assignment all units have an equal probability of treatment

8 / 16



Generalised Propensity Score (GPS) adjustment

The GPS measures the conditional probability of assignment to
treatment given confounders

π(d∗|X ;α) = Pr(D = d∗|X = x)

Under random assignment all units have an equal probability of treatment

We can use the GPS conditional probability values to create a
pseudo-sample that simulates random assignment

8 / 16



Generalised Propensity Score (GPS) adjustment

The GPS measures the conditional probability of assignment to
treatment given confounders

π(d∗|X ;α) = Pr(D = d∗|X = x)

Under random assignment all units have an equal probability of treatment

We can use the GPS conditional probability values to create a
pseudo-sample that simulates random assignment

This is achieved via a four step approach

8 / 16



Generalised Propensity Score (GPS) adjustment

The GPS measures the conditional probability of assignment to
treatment given confounders

π(d∗|X ;α) = Pr(D = d∗|X = x)

Under random assignment all units have an equal probability of treatment

We can use the GPS conditional probability values to create a
pseudo-sample that simulates random assignment

This is achieved via a four step approach

i. Estimate the GPSs using a flexible model: π̂(d|X; α̂)

8 / 16



Generalised Propensity Score (GPS) adjustment

The GPS measures the conditional probability of assignment to
treatment given confounders

π(d∗|X ;α) = Pr(D = d∗|X = x)

Under random assignment all units have an equal probability of treatment

We can use the GPS conditional probability values to create a
pseudo-sample that simulates random assignment

This is achieved via a four step approach

i. Estimate the GPSs using a flexible model: π̂(d|X; α̂)

ii. Adjust for confounding via a mean response model: E [Y |D, π̂(d|X; α̂);β]

8 / 16



Generalised Propensity Score (GPS) adjustment

The GPS measures the conditional probability of assignment to
treatment given confounders

π(d∗|X ;α) = Pr(D = d∗|X = x)

Under random assignment all units have an equal probability of treatment

We can use the GPS conditional probability values to create a
pseudo-sample that simulates random assignment

This is achieved via a four step approach

i. Estimate the GPSs using a flexible model: π̂(d|X; α̂)

ii. Adjust for confounding via a mean response model: E [Y |D, π̂(d|X; α̂);β]

iii. Use β̂ to calculate expected response at dose d∗

µ̂(d∗) = E[Y (d∗)] = EX

[
E(Y |d∗, π̂(d∗|X; α̂)); β̂

]
,

and repeat for all doses of interest.

8 / 16



Generalised Propensity Score (GPS) adjustment

The GPS measures the conditional probability of assignment to
treatment given confounders

π(d∗|X ;α) = Pr(D = d∗|X = x)

Under random assignment all units have an equal probability of treatment

We can use the GPS conditional probability values to create a
pseudo-sample that simulates random assignment

This is achieved via a four step approach

i. Estimate the GPSs using a flexible model: π̂(d|X; α̂)

ii. Adjust for confounding via a mean response model: E [Y |D, π̂(d|X; α̂);β]

iii. Use β̂ to calculate expected response at dose d∗

µ̂(d∗) = E[Y (d∗)] = EX

[
E(Y |d∗, π̂(d∗|X; α̂)); β̂

]
,

and repeat for all doses of interest.

iv. Calculate ATEs: τ̂(d∗) = µ̂(d∗)− µ̂(0), using (block) bootstrap for
variance estimation
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⋆ Modelling with a scalar PS, rather than high-dimensional X , allows
use of flexible forms (i.e. GAMs and high-order polynomial)

⋆ GPS can be used to form a number of ATE estimators via
weighting, matching, or regression (combine for doubly robust)

⋆ A longitudinal mixed model extension of the GPS can address
unobserved effects and bi-directional causality between response and
treatment by subsuming these effects within the GPS

9 / 16



Methodological contribution of the paper

ATE estimates are unbiased if the estimated GPS consistently
estimates the true GPS

A necessary condition is that X is sufficient to represent confounding

We show that with longitudinal data the GPS can be estimated via a
mixed model approach to address

⋆ Unmeasured confounding: condition on unit level random effects,
or correlated random effects, to adjust for unobserved time-invariant
confounding: π̂(d∗|xit, ui; α̂)

⋆ Reverse causality: condition on lagged values of the response
yi,t−p, or the response history Hy

i,t−1
, to allow for endogeneity from

reverse causation: π̂(d∗|xit, ui,H
y
i,t−1

; α̂)

⋆ Dynamic assignment: include lagged values of the treatment
di,t−p, or treatment history Hd

i,t−1
, to represent the dynamic nature

of assignment: π̂(d∗|xit, ui,H
y
i,t−1

,Hd
i,t−1

; α̂)
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Algorithm for ATE estimation via mixed GPS model

1. Use a flexible mixed model (i.e. GAMM) to estimate fD|X(d|x, u;α)

2. Use α̂, with the appropriate density function, to calculate the GPSs:
π̂(d∗|x, u; α̂), for all d∗ of interest

3. Ensure common support by selecting only units which have a
reasonable probability of being treated across the range of dose

4. Estimate E(Y |D, π̂(d|x, u; α̂)) using a penalised spline model

5. Average over predicted values from 4., evaluated at at dose d∗, to
obtain a point estimate of the expected response at d∗: µ̂(d∗)

6. Repeat for all dose of interest, form the dose-response curve, and
estimate ATEs:

τ̂(d∗) = µ̂(d∗)− µ̂(0)

7. Use a single (block) bootstrap re-sampling scheme over 1. to 6. to
obtain standard errors
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Urban longitudinal data (TTI and MSA)

• Responses: annual proportional change in traffic volume (vmt), network
performance (delay per vmt), and productivity (average wage)

• Treatment: annual proportional change in network lane miles (freeway
and arterial)

• Pre-treatment covariates (confounders):

⋆ Lagged responses: to capture reverse causality
⋆ Congestion & traffic volume: measured by delay and vmt
⋆ Network scale & mix: network length, mix of freeway / arterial
⋆ Traffic mix: volume on freeway / arterial
⋆ Mode characteristics: public transport patronage, state fuel price
⋆ Economy: productivity, income and economic structure
⋆ Employment and population distribution and growth

• Unobserved confounders: physical characteristics, geographical features,
aspects of road network design, activity/travel behaviour patterns

⋆ Random city-level effects specified in longitudinal mixed models

• Models: Normal GAMMs for all sub models
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⋆ ATE > proportional to
treatment for doses ≤ 2

⋆ on average 10% increase
in lane miles → 9%
increase in vmt net of
‘natural growth’
(estimated 1.4% p.a.)

⋆ capacity expansions in the
range considered have not
in general reduced traffic
density (vol. / cap.)
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⋆ capacity expansions have
not ameliorated urban
congestion

⋆ average road user has not
experienced reduced delay

⋆ aggregate cost of
congestion has increased

⋆ no statistically significant
effects on delay per vmt

⋆ this is the case even for
large capacity expansions

⋆ due to natural growth
congestion worsens
further (approx. 3% p.a.)
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⋆ urban road network
expansions have not
induced higher
productivity

⋆ ‘naive’ regressions of
productivity on treatment
do indicate a +ve
association

⋆ but no significant ATEs
having isolated a viable
sample and adjusted for
confounding

⋆ no fall in interaction costs
and apparently no scale
effects
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for ex-post evaluation of transport interventions

Model indicates that urban road network expansions have induced
demand but have not ameliorated congestion or raised productivity

Results do not imply that there are no economic benefits from road
capacity expansions per se:

⋆ results specific to marginal changes on mature congested urban networks

⋆ increased mobility with aggregate volume / capacity ratios constant

⋆ network generalised costs do not improve and total urban delay rises

⋆ the scale (increased traffic) effect does not appear to influence
productivity (either +ve or -ve)

To improve urban road network performance and raise productivity a
combination of efficient pricing with investment in both roads and mass
transit may be more effective
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The problem of confounding

 

 

D = capacity 

expansion 

Y = productivity 

X = city 

characteristics 

The relationship between capacity and productivity is confounded
by a set of city characteristics which

⋆ Are important for productivity

⋆ Influence the level of capacity expansion received return
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