

Distraction among bicyclists and pedestrians

Marjan Hagenzieker

SWOV Institute for Road Safety Research

Introduction

- In many (EU) countries active mobility is encouraged →
 - cycling becomes more popular
 - E-bike, sports, older people, ...
- Use of portable devices by bicyclists and pedestrians?
- Effects on road safety?
- Role of distraction? Research?

Recent trends

- Portable electronic devices:
 - Phoning
 - Texting
 - Listen to music

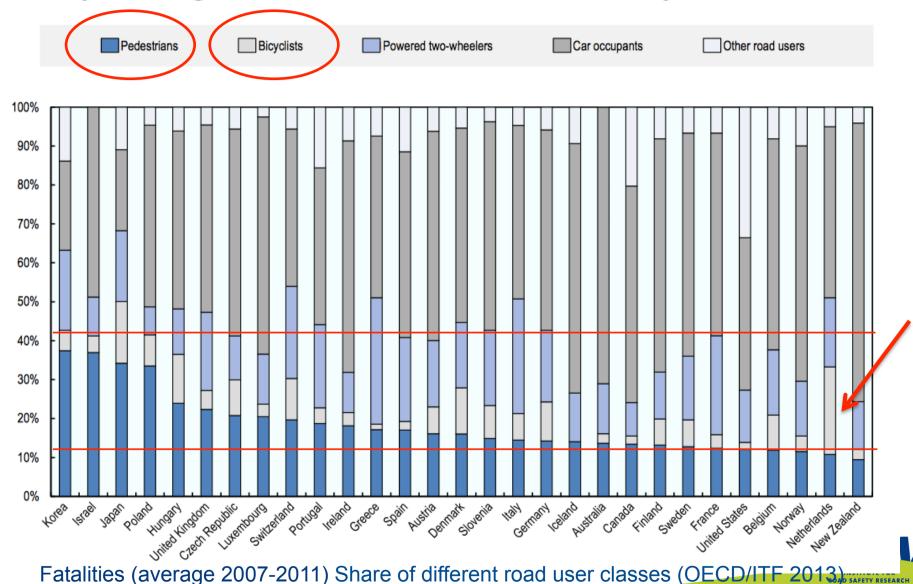
Target: 1 million in
 2025 in the
 Netherlands²

www.spiveylaw.com

¹ Goldenbeld et al. (2012) ² IEA (2012)

Distraction

- cf "Everybody knows what attention is" (James, 1890)
- Various definitions in literature, all focussing on driver – not cyclist/pedestrian, e.g.:
- "the diversion of attention away from activities critical for safe driving towards a competing activity" (Lee et al, 2008)
- "diversion of attention from driving, because driver is temporarily focusing on an object, person, task or event not related to driving" (Hedlund et al, 2005)
- → distraction = attention for the wrong things



Sources of distraction

- Talking and listening
 - phone, music, passenger
- Operating
 - dialling, texting, internet, navigation, music-player
- Various other
 - eating, drinking, day dreaming, looking at advertisements & bill boards, make up, ...

Cycling & pedestrian safety

Change in fatalities 2000-2011

Country	Bicyclists	Car occupants	Pedestrians		
Australia	10%	-34%	-36%		
Austria	-32%	-47%	-38%		
Belgium	-49%	-51%	-22%		
Canada	25%	-23%	-21%		
Czech Republic	-58%	-49%	-51%		
Denmark	-48%	-54%	-67%		
Finland	-64%	-23%	-34%		
France	-48%	-61%	-39%		
Germany	-40%	-55%	-38%		
Greece	-41%	-47%	-41%		
Hungary	-53%	-46%	-64%		
Ireland	-10%	-63%	-45%		
Israel	-20%	-24%	-32%		
Italy	-30%	-57%	-40%		
Japan	-32%	-63%	-33%		
Korea	-14%	-58%	-46%		
Netherlands	-14%	-57%	-35%		
New Zealand	-53%	-44%	-11%		
Norway	-15%	-56%	-64%		
Poland	-55%	-30%	-38%		
Portugal	-29%	-59%	-53%		
Slovenia	-46%	-62%	-65%		
Spain	-42%	-70%	-58%		
Sweden	-55%	-60%	-27%		
Switzerland	-19%	-56%	-47%		
United Kingdom	-17%	-49%	-47%		
United States	-2%	-42%	-7%		

- Decrease in number of cyclist and pedestrian fatalities in many countries
- However: decrease generally less than among car occupants
- Lack of exposure data!

Cyclists:

- Denmark: risk (fatalities/km) dropped by about
 40% between 2001 –
 2010 (OECD/ITF 2013)
- NL: risk declined only by 18% between 2001 and 2009 and has not decreased since 2004 (Reurings et al. 2012)

Source: OECD/ITF 2013

However, ...

- Crashes involving bicyclists and pedestrians often not recorded
- Particularly: crashes with personal (serious) injuries
- Number of seriously injured cyclists is showing an increasing trend over the period 2000–2009 in the Netherlands, the UK and Germany (Pastor 2012)
- Lack of exposure data!

Literature review

- Cycling and walking while phoning, listening to music, texting
- Risk perception
- Observational studies
- Questionnaires
- Crash data (official & self-reported)
- Few studies found
- Bicyclists: 6 studies from NL + 1 BE,
 1 DK/AUS, 1 JPN
- Pedestrians: 14 from US + 2 AUS

Prevalence

US:

- Nearly 1/3 of pedestrians crossing street either listened to music, used hand-held phone or was texting while crossing street (Thomson et al. 2012)
- 8% of pedestrians use mobile device while crossing (Cooper et al., 2012)
- 22% of pedestrians listen to music while crossing (Walker et al. 2012)

NL:

• 39% of **cyclists** at least occasionally listen to music and 55% engage in a phone call (Goldenbeld et al. 2012)

Age	Using the phone while cycling	Listening to music while cycling
12-17	77%	76%
25-34	76%	54%
35-49	47%	23%
50-65	34%	14%

Paris, 15 April 2014

10

Effects on behaviour		
	С	Р
missed bicycle bell	1	
missed horn honking	1	
speed	_	-/
lateral position	_	_
response time	_	_
detected visual objects	_	_
subjective risk rating	1	
number of conflicts	_	-/↑
disobedience of traffic rules	1	
unsafe behaviours	1	
mistakes		_
looking at relevant objects?		-/↑ / ↓
injury rate		
crash risk (self-reported)	1.4	-1.8
A lacrocco de documento ma offect		

(Based on reviews by Stelling & Hagenzieker, 2012; Stelling et al., 2013, 2014; SWOV 20 143) RESEARCH

Effects on behaviour			
	С	Р	
missed bicycle bell	1		
missed horn honking	_		
speed	1	Ţ	
lateral position	_	1	
response time	1	1	
detected visual objects	-/ ↓	Ţ	
subjective risk rating	†		
number of conflicts	_	-/	
disobedience of traffic rules	_		
unsafe behaviours	1	1	
mistakes		1	
looking at relevant objects?	1	-1	
injury rate		1	
crash risk (self-reported)	1.4 –1.8		

 \uparrow Increase \checkmark decrease — no effect

(Based on reviews by Stelling & Hagenzieker, 2012; Stelling et al., 2013, 2014; SWOV 20 PASTY RESEARCH

Effects on behaviour		texting	
		С	Р
missed bicycle bell			
missed horn honking			
speed			1
lateral position			
response time			
detected visual objects		1	
subjective risk rating			
number of conflicts			
disobedience of traffic rules			1
unsafe behaviours		1	1
mistakes			
looking at relevant objects?		1	1
injury rate			1
crash risk (self-reported)			

 \uparrow Increase \checkmark decrease — no effect

(Based on reviews by Stelling & Hagenzieker, 2012; Stelling et al., 2013, 2014; SWOV 2013) RESEARCH

Marian Hagenzieker, OECD/ITE Sand

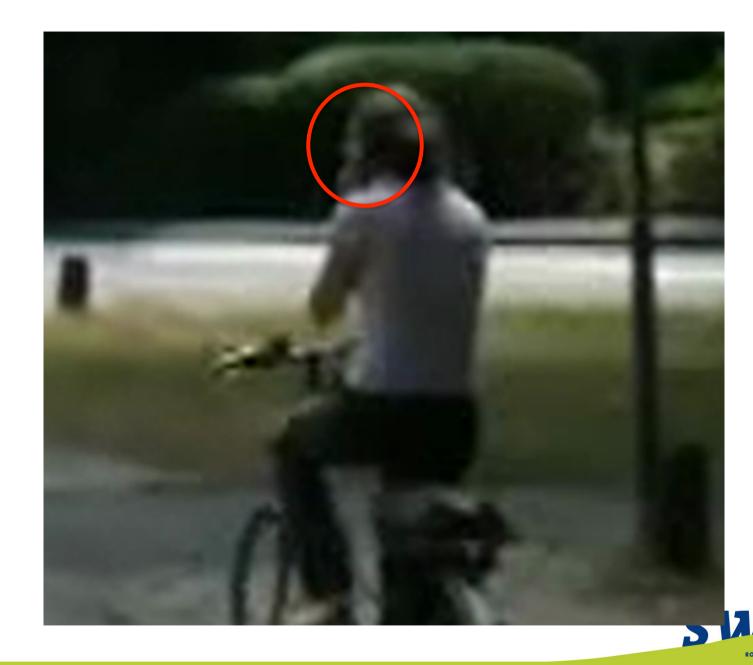
-10V'

Effects on behaviour					texting	
	С	Р	С	Р	С	Р
missed bicycle bell	1		1			
missed horn honking	1		_			
speed	_	-/	1	1		1
lateral position	_	_	_	†		
response time	_	_	1	1		
detected visual objects	_	_	-/↓	1	Ţ	
subjective risk rating	1		1			
number of conflicts	_	-/↑	_	-/↑		
disobedience of traffic rules	†		_			†
unsafe behaviours	1		1	1	1	1
mistakes		_		†		
looking at relevant objects?		-/↑ / ↓	1	-/	1	1
injury rate				†		1
crash risk (self-reported)	1.4 –1.8					

 \uparrow Increase \checkmark decrease — no effect

(Based on reviews by Stelling & Hagenzieker, 2012; Stelling et al., 2013, 2014; SWOV 2013) RESEARCH

Results: auditory perception


- Device use compromises auditory perception⁵
- In-earbuds particularly detrimental

- Listening to music through one earbud has no negative effect on cycling behaviour and number of missed auditory stimuli
 - However, it can negatively impact sound localisation: we need two ears to localise sounds!

⁵ De Waard, Edlinger & Brookhuis (2011)

Results: crashes

 Official crash records provide no information about the use of electronic devices

- Device use increases the crash risk for teen cyclists (factor 1.4) and young adults (factor 1.8) but not for middle-aged and older adult cyclists¹
 - self-reported data
 - only (very) light injury crashes

¹ Goldenbeld et al. (2012)

Conclusions (1)

- Only few studies on distraction among cyclists and pedestrians available
- Severe under-reporting of bicyclist/pedestrian crashes and injury & exposure data largely absent for these road user groups
- → Crash/injury risks unknown
- Listening to music, conversing on the phone and texting negatively influence behavioural performance and self-reported crash risk

Conclusions (2)

- Cyclists and pedestrians listening to music and conversing on the phone miss auditory information
- The few available studies show usage of portable devices while walking and cycling is considerable
- Concerns about limited availability of auditory information should be taken seriously
 - cyclists using electronic devices encountering quiet electric cars?
- Which measures can be taken?
 - Education and information
 - Prohibit (hand-held) use ??

References

- 1. Hagenzieker, M.P., & Stelling, A. (2013). Schatting aantal verkeersdoden door afleiding. [in Dutch with English summary]. SWOV Institute for Road Safety Research.
- 2. IEA (2012). *Hybrid and Electric Vehicles: The electric drive captures the imagination*. International Energy Agency
- 3. OECD/ITF (2013). Cycling, Health and Safety.
- 4. OECD/ITF (2013). Road Safety Annual Report.
- 5. Pastor, C. (2012). *Cycling Safety in Europe*. In: Proceedings of International Cycling Safety Conference 2012. 7-8 November 2012, Helmond, The Netherlands.
- 6. Reurings, M.C.B., Vlakveld, W.P., Twisk, D.A.M., Dijkstra, A., et al. (2012). *Van fietsongeval naar maatregelen: kennis en hiaten. Inventarisatie ten behoeve van de Nationale Onderzoeksagenda Fietsveiligheid (NOaF)*. R-2012-8. SWOV.
- 7. Stelling, A. & Hagenzieker, M. (2012) Afleiding in het verkeer. Een overzicht van de literatuur [in Dutch with English summary]. SWOV Institute for Road Safety Research.
- 8. Stelling, A, Hagenzieker, M., & Van Wee, B. (2013) *Cycling and sounds: the impact of the use of electronic devices on cycling safety*. Paper presented at the 3rd International Conference on Driver Distraction and Inattention, Gothenburg, Sweden.
- 9. Stelling-Konczak, A., Hagenzieker, M, & Van Wee, B. (2014; in prep). Traffic sounds and cycling safety: The use of electronic devices by cyclists and the quietness of (hybrid) electric cars.
- 10. SWOV (2013) Fact sheet "Use of media devices by cyclists and pedestriage".

Studies included in overview

Pedestrians:

- Bungum et al. 2005 (USA)
- Byington & Schwebel 2013 (USA)
- Cooper et al. 2012 (USA)
- Hatfield & Murphy 2007 (AUS)
- Hyman et al. 2010 (USA)
- Loeb & Clarke 2009 (USA)
- Nasar et al. 2008 (USA)
- Nasar & Troyer 2013 (USA)
- Neider et al. 2010, 2011 (USA)
- Schabrun et al. 2014 (AUS)
- Schwebel et al. 2012 (USA)
- Sotiraki et al.2012 (review GR)
- Stavrinos et al. 2011 (USA)
- Walker et al. 2012 (USA)
- Thomson et al. 2012 (USA)
- Liberty Mutual 2013 (USA)
- Wang et al. 2012 (USA)

Cyclists:

- Chataway et al. 2014 (DK/AUS)
- De Waard et al. 2010, 2011, 2014 (NL)
- Goldenbeld et al. 2010, 2012 (NL)
- Ichikawa & Nakahara 2008 (JPN)
- Terzano 2013 (NL)
- Vansteenkiste et al. 2014 (BE)

