HDV fuel efficiency technologies

Dr. Felipe Rodríguez

Decarbonising Road Freight EXPERT WORKSHOP 28-29 June 2018

Why policy makers should pay attention to HDVs

THE INTERNATIONAL COUNCIL ON Clean Transportation

Long-haul tractor-truck CO₂ standards around the globe

4 key barriers delay technology uptake

Why regulate HD efficiency?

Drivers for CO₂ emissions from on-road freight and market barriers

Drivers for tailpipe CO₂ emissions from road freight transport

Life-cycle carbon intensity of different fuels

THE INTERNATIONAL COUNCIL ON Clean Transportation

Indirect emissions

Direct emissions

Data source: Moultak, Marissa, Nic Lutsey, and Dale Hall. 2017. "Transitioning to Zero-Emission Heavy-Duty Freight Vehicles." The International Council on Clean Transportation https://www.theicct.org/ publications/transitionin g-zero-emission-heavyduty-freight-vehicles

Fossil fuel comparator

Data sources: European Commission proposal for recast Renewable Energy Directive to 2030; Valin et al. (2015); Searle et al. (2017); Malins, C. (2017)

7

Tractor-trailer efficiency for different regions in the year 2015

work. The EU will propose HDV CO₂ standards in May 2018.

Direct use of electricity has benefits on the vehicle efficiency, and results in a lower overall energy consumption

e international council on ean Transportation

Vehicle efficiency is the biggest lever to reduce freight's energy demand

NTERNATIONAL COUNCIL ON

lean Transportation

Data source: International Energy Agency. (2017). The Future of Trucks. Implications for energy and the environment.

10

Cost-effective technology potential

Tractor-trailers account for the majority of HDV CO₂ emissions

Reference 2015 tractor-trailer used for our analysis

International Council on Clean Transportation. http://www.theicct.org/EU-HDV-fuel-efficiency-tech-2020-2030

List of technologies considered in analysis

Engine	Aerodynamics	Rolling resistance	Mass reduction area / system	Driveline / Transmission	Auxiliaries	Driver assistance systems	Hybridization
Combustion optimization	Roof spoiler	Low rolling resistance tires	Engine	Automated man. transmission	Variable speed cooling fan	Stop-start / idle reduction	Integrated Mild Hybrid
Advanced turbocharging	Cabin side turning vanes	Single wide tires	Coolant circuit	Dual clutch transmission	Variable/clutched air compressor	Eco-roll	Parallel hybrid
EGR reduction / advanced SCR	Tractor/truck side skirts	Tire pressure monitoring	Fuel circuit	Downspeeding	LED lighting	Speed limiter	48-V electric architecture
Friction reduction	Active grille shutter	Automatic tire inflation	Exhaust system	Improved mech. efficiency	Electro-hydraulic power steering	Predictive cruise control	24-V brake energy recovery
On demand / improved pumps	Cabin underbody devices		Transmission	Top-torque control	High efficiency HVAC	Adaptive cruise control	
Turbocompound	Rearview cameras		Electrical system	Engine/trans. deep-integration	High efficiency alternator		
Waste heat recovery	Air dam		Chassis				
	Tractor side panels		Suspension				
	Wheel covers		Braking				
	Vented mud-flaps		Wheels				
	Trailer side skirts		Cabin				
	Trailer rear-end device		Trailer Body		Not captured VECTO	l by Partially capture by VECTO	ed Captured by VECTO
THE INTERNATIONAL COUNCIL Clean Transportati	Trailer underbody on devices on						1

43% CO₂ reduction possible for long-haul tractor-trailers by 2030

How efficient can diesel longhaul tractor trailers be in the future?

- Engine: 55% peak efficiency
- Aerodynamic drag: 0.35
- Rolling resistance: 4 N / kN
- Lightweighting: -2300 kg

THE INTERNATIONAL COUNCIL ON ean Transportation

Hybrid: P2, 120 kW, 2 kWh

43% CO₂ reduction possible for long-haul tractor-trailers by 2030

- How efficient can diesel longhaul tractor trailers be in the future?
- Engine: 55% peak efficiency
- Aerodynamic drag: 0.35
- Rolling resistance: 4 N / kN
- Lightweighting: -2300 kg

THE INTERNATIONAL COUNCIL ON Clean Transportation

Hybrid: P2, 120 kW, 2 kWh

The Supertruck II program from the US department of energy aims to show pathway to **55**% brake thermal efficiency. Participants include Cummins, Daimler, Navistar (VW), Volvo, Paccar (DAF).

Daimler, Cummins, Navistar, and Volvo already demonstrated 50%+ peak eff.

The pathway to 55% peak efficiency could include the use of waste heat recovery (WHR), variable valve timing, back-pressure reduction, low EGR/high SCR concepts, low high peak combustion pressures, optimized combustion bowl, optimized injector, closed-loop injection rate shaping, reduced heat transfer, reduced friction in piston ring pack and bearings, opposed piston architecture, low temperature combustion, among others.

The technologies for 43% reduction increase the tractor-trailer cost by approximately 20%

Source: Meszler, D., Delgado, O., Rodriguez, F., & Muncrief, R. (2018). *European Heavy-Duty Vehicles – Cost effectiveness of fuel efficiency technologies for long-haul tractor-trailers in the 2025-2030 timeframe*. International Council on Clean Transportation.

http://theicct.org/publications/cost-effectiveness-of-fuel-efficiency-tech-tractor-trailers

E INTERNATIONAL COUNCIL ON

The technologies for 43% reduction will have a payback between 1.4 to 2.7 years in 2030

Main study assumptions:

- Fuel price: 0.7 to 1.4 €/L
- Discount rates: 4% to 10%
- Evaluation years: 2025 and 2030
- Trailers per tractor: 1.4

THE INTERNATIONAL COUNCIL ON Clean Transportation

- Vehicle lifetime: ~1 M km
- First owner annual use: ~110k km

Source: Meszler, D., Delgado, O., Rodriguez, F., & Muncrief, R. (2018). *European Heavy-Duty Vehicles – Cost effectiveness of fuel efficiency technologies for long-haul tractor-trailers in the 2025-2030 timeframe*. International Council on Clean Transportation.

http://theicct.org/publications/cost-effectiveness-of-fuel-efficiency-tech-tractor-trailers

■ Payback (bottom axis) ■ Fuel Consumption (top axis)

HD ZEV freight

HD ZEV freight: Long-haul is simultaneously the most important and most challenging segment

Seç	jments	Definition	Duty Cycle	Range	Payload Requirements	Battery/ Hydrogen Requirements	Infrastructure Requirements	CO ₂ Footprint	Current Availability
Freight R B	Urban Delivery	 Medium Duty rigid (straight) trucks and vans 	Low speed, transient	<200km/ day	<5 ton	<100kWh <10kg H ₂	Limited	10-15%	>20 models
	Drayage	 Transport freight from ports Travel high volume freight corridors 							
	Regional Delivery	 Return to base Mix of urban and highway 	High speed, constant	>500km/	> 20 top	>800kWh	Extensive	65 75%	Nono
	Long Haul	Mostly tractor- trailers		day	>20 ton	>30kg H ₂		65-75%	None

Lifecycle CO₂ emissions over by vehicle technology type for Europe

Fuel WTW carbon [g CO2/MJ_{fuel}]

The carbon intensity of the fuels is the only lever available for full decarbonization of on-road freight. Direct use of electricity results in the lowest CO₂ emissions

Moultak, Marissa, Nic Lutsey, and Dale Hall. 2017. "Transitioning to Zero-Emission Heavy-Duty Freight Vehicles." The International Council on Clean Transportation

NTERNATIONAL COUNCIL ON

lean Transportation

22

Questions? Contact the HDV team at the ICCT

Rachel Muncrief

Program Director rachel@theicct.org Works out of: Washington, DC Started w/ ICCT in: 2012

Oscar Delgado

Senior Researcher oscar@theicct.org Works out of: Washington, DC Started w/ ICCT in: 2013

Benjamin Sharpe

Senior Researcher / Canada Lead ben@theicct.org Works out of: San Francisco, CA Started w/ ICCT in: 2009

Felipe Rodríguez

Researcher f.rodriguez@theicct.org Works out of: Berlin Started w/ ICCT in: 2016

