

Strategic tool

- ► ITF's "flagship" publication part of OECD Outlook series
- In-house models covering all modes of transport, freight and passenger – globally, nationally, cities
- ► Long-term development of global transport volumes and related CO₂ emissions, health impacts, SDGs
- Allows us to analyse how world could change if we choose different policies and development paths

Projecting under uncertainty

- ► How socio-economic changes affect transport demand
 - > Population, GDP, trade, transport policies
- Relies on our understanding of how these affected transport in the past
- Uncertainty is an inherent element of future transport scenarios
 - > Slowing economic growth, changing demographics, travel behaviour, technology and innovation

Passenger transport demand to triple by 2050

China and India to generate 1/3 of global pkm

OECD share of pkm falls from 43% to 24%

Non-urban road is the largest mode by 2050

Current demand pathway, billion passenger-kilometres

Urban passenger transport to double by 2050

Shared mobility* is the fastest growing mode

Public transport ridership growth strong in non-OECD rail and metro

Car share still dominant but declining

Current demand pathway, billion passenger-kilometres

*Free-floating shared vehicle systems (cars, bikes, scooter, motorbikes) and shared taxis and minibuses

Freight growth subject to significant uncertainties

Tkm to triple by 2050

Maritime continues to dominate freight

Anticipating bottlenecks and planning investment difficult

Current demand pathway, billion tonne-kilometres

Policy scenarios: current and high ambition

Car access restrictions

Pricing

Mass transit

Transport integration

Urban density

Carbon pricing

Trade of coal and oil

Logistics efficiency

Efficiency and EVs

Current ambitions not enough to achieve climate goals

- Transport-related CO₂ emissions to grow over 60% by 2050
- More ambitious policies could reduce emissions by 30%
- Importance of disruptive innovations

Transport CO₂ emissions, million tonnes

Ś.

Policies will lead to shifts by sector

Share of urban transport declines in all scenarios

Regional passenger transport, non-urban freight and international freight increase shares

Reflects current policy focus on urban transport

Transport CO₂ emissions, million tonnes

Urban passenger transport
Domestic intercity passenger transport
Passenger aviation
Domestic non-urban freight

□ Regional passenger transport
□ International intercity passenger transport
□ Urban freight
☑ International freight

2019 Edition: Focus on disruptions

Teleworking

Shared mobility

Autonomous driving

Long-haul LCC

Energy innovation

Ultra-HSR

Disruptions for urban passenger transport

Teleworking

蚓

·····

Q

S

3-30 % of trips affected

Shared mobility

Uptake speed current or 2x

Autonomous driving

2.5%-40% of trips affected

MaaS

20%-100% transport integration

Access restrictions

Parking pricing

20%-60% of trips affected

10%-40% price increase

Importance of managing change

- Unmanaged disruption leads to modal shift towards private car use in urban areas
- Managed disruption (policy actions and regulation to support transition) can result in significantly more sustainable urban mobility

Urban mobility, million passenger-kilometres

Disruptions for inter-urban passenger transport

Long-haul LCC 3-30 % of trips affected

Energy innovation Cost decrease and range of electric planes

Autonomous vehicles 5%-25% of trips affected

Shared transport

Ultra-HSR

13%-27% trips affected

Cost of carbon

Technology assumptions

USD 500 – USD 1000 per tonne

No major mode shift expected for non-urban travel

Not very sensitive to technology or policy changes

Reduced cost of transport may lead to longer trips

Combined technology and policy disruptions needed to reduce CO₂

Billion passenger-kilometres

Disruptions for freight transport

E-commerce

5%-25% increase

3D printing

Up to 38% reduction in trade value

New trade routes Central Asia, Arctic route

Energy innovation 20%-8

20%-80% reduction in carbon intensity

Autonomous trucks Up to 90% uptake for inter-urban

High-capacity vehicles 5%-20% uptake

New routes: Impact on trade flows

Potential impact of disruptions the largest

Massive changes in costs, activities and supply chains

- Changes trade patterns, infrastructure use, logistics chains
- Poses a challenge for investment decisions

Freight, Billion tonne-kilometres

