Potential of Intelligent Transport Systems to reduce greenhouse gas emissions in road freight transport

Andrew Winder
Project Manager, Clean Mobility
ERTICO, Brussels
Contents

• Background and scope
• In-vehicle ITS applications
 – Navigation
 – Driving dynamics
• Infrastructure-based and cooperative ITS applications
 – Traffic management
 – Parking / deliveries
• Conclusions
Several ITS applications have the potential to reduce CO₂ emissions of vehicles:

– encouraging results from studies & deployments
– but no real benchmarking

A desk study by ERTICO in 2016 looked at real, simulated and modelled results for heavy commercial vehicles (trucks and buses)

– comparison of results of key projects/trials
– followed a similar 2015 study for passenger cars
– Both studies in conjunction with ACEA
Currently available ITS applications which reduce emissions in goods vehicles (and buses) by:

- optimising routing
- making driving smoother
- more efficient parking and deliveries
- more efficient traffic signals

Report available at:

- or search the internet for “ITS4CV”
Measurement

• Trials usually without system (baseline) and with system (treatment):
 – Average distance travelled
 – Total fuel use
 – Fuel use per kilometre (proxy for CO₂ emissions)

Data from: On-road trials of ITS applications
 Studies using driving simulators
 Traffic/emissions modelling

Some projects also included an impact assessment:
• Potential impact of system in real-life situations
• Can include future-casting, scaling up, scenarios
A few of the contributing projects

- **eCoMove** (http://ecomove-project.eu) – Cooperative mobility systems and services for energy efficiency
- **FREILOT** - Urban Freight Energy Efficiency Pilot
- **ecoDriver** (http://ecodriver-project.eu) - Supporting the driver in conserving energy and reducing emissions
- **Compass4D** (www.compass4d.eu) - Cooperative Mobility Pilot on Safety and Sustainability Services for Deployment
- **CO-GISTICS** (www.cogistics.eu) - COoperative loGISTICS for sustainable mobility of goods
- **OptiTruck** (www.optitruck.eu) - Optimal fuel consumption with Predictive Power Train Control and calibration for intelligent trucks

- **Amitran** (www.amitran.eu) – CO2 assessment methodology for ICT in transport
Eco-Navigation

- Dynamic navigation integrates maps with up-to-date traffic information (e.g. RDS-TMC information)
- Eco-navigation includes information such as estimated fuel consumption and proposes most fuel efficient route

Potential CO₂ savings:
- Between 5% and 10% in urban/suburban areas
- Less for longer distance trips
Eco-Driving

- Systems designed to influence driver’s behaviour: use of gears, engine braking, anticipation, etc.
- Recognise driving behaviour and provide on-trip advice and post-trip feedback/feed-forward
Eco-Driving

Potential CO$_2$ savings:

- HGVs: average 10% reduction (mixed roads); Range 0-25% (ecoDriver, 2016)
- Up to 25% CO$_2$ reduction at junctions, traffic lights, bends, etc.
- Little or no CO$_2$ benefit in congested situations and limited benefit on motorways
- Scania Driver Support system provides real-time coaching in HGVs with tips and feedback via a visual HMI: 10% improvement in fuel efficiency
Predictive Powertrain Control

- Uses vehicle, infrastructure and topographic data to anticipate a fuel saving driving style
- Focus on the topography, using slope data ahead of the vehicle to generate a predictive speed profile to optimise control of the powertrain

Potential CO₂ savings:
- Applications on the market from OEMs like Scania (Active Prediction), Daimler (Predictive Powertrain Control) and Volvo (I-See), and an average saving of 5% of fuel/CO₂
- Visual HMI: 10% improvement in fuel efficiency
Cooperative Adaptive Cruise Control (C-ACC)

• Enhancement to ACC systems that can optimise a vehicle's speed profile by adding communication with other vehicles and/or infrastructure

Potential CO₂ savings:
• Tests on trucks in the euroFOT project found an average 2% fuel saving with C-ACC
Traffic Signal Control

- Coordination of traffic signals in a network by the use of timing plans (varying by time of day) loaded on a central computer
- Green waves for vehicles with recommended speed

Potential CO$_2$ savings:
- 3% to 7% feasible
- Success of green waves depend on traffic patterns
- Measured impact of selective truck priority in FREILOT project in from test sites in Helmond and Lyon found fuel consumption / CO$_2$ emissions were reduced by 8 to 13%.
Energy Efficient Intersection Services

• EEIS: Traffic lights which extend green phase to selected vehicles (Compass4D project).

Potential CO\textsubscript{2} savings:
• Measurements in Helmond and Bordeaux showed that the system (which included an in-cab GLOSA service) led to an improvement in HGV CO\textsubscript{2} efficiency (g/km) of 5% - 10% (at intersection level)
Intelligent truck parking & Delivery space booking

- On-trip reservation system for loading spaces in cities and truck parking on motorways

Potential CO$_2$ savings:
- Around 20% reduction for delivery vehicles (at the location where they are delivering)
- Very difficult to quantify (percentage CO$_2$ reduction is only for the part where the delivery takes place)
Many benefits…. but:

Validation & impact assessment depends on:

- road network characteristics
- traffic load
- local topography
- penetration rate of the applications / systems
- driver behaviour
Proposed actions

• Explore and build consensus on how to measure combined effects of several ITS solutions together
• Work towards defining a common Impact Assessment methodology to assess in a comparable way solutions for reducing emissions
• Session at ITS World Congress, Copenhagen to share knowledge and discuss required steps:
 – session SIS38, Tuesday 18 September
 – will work towards ERTICO Clean Mobility Roadmap target to achieve consensus on evidence of environmental benefits of different ITS applications by 2020
Thank you!

Andrew Winder
Project Manager, Clean Mobility
a.winder@mail.ertico.com
ERTICO website: ertico.com
ERTICO Newsroom: erticonetwork.com