

Potential of Intelligent Transport Systems to reduce greenhouse gas emissions in road freight transport

Andrew Winder Project Manager, Clean Mobility ERTICO, Brussels

Contents

- Background and scope
- In-vehicle ITS applications
 - Navigation

- Driving dynamics
- Infrastructure-based and cooperative ITS applications
 - Traffic management
 - Parking / deliveries
- Conclusions

Several ITS applications have the potential to reduce CO₂ emissions of vehicles:

- encouraging results from studies & deployments
- but no real benchmarking

A desk study by ERTICO in 2016 looked at **real**, **simulated and modelled results for heavy commercial vehicles** (trucks and buses)

- comparison of results of key projects/trials
- followed a similar 2015 study for passenger cars
- Both studies in conjunction with ACEA

2016 ERTICO study scope

Background and scope

Currently available ITS applications which reduce emissions in goods vehicles (and buses) by:

- optimising routing
- making driving smoother
- more efficient parking and deliveries
- more efficient traffic signals
- Report available at:
 - <u>http://erticonetwork.com/reducing-co2-</u> <u>emissions-heavy-commercial-vehicles/</u>
 - or search the internet for "ITS4CV"

Measurement

- Trials usually without system (baseline) and with system (treatment):
 - Average distance travelled
 - Total fuel use
 - Fuel use per kilometre (proxy for CO₂ emissions)

Data from: On-road trials of ITS applications Studies using driving simulators Traffic/emissions modelling

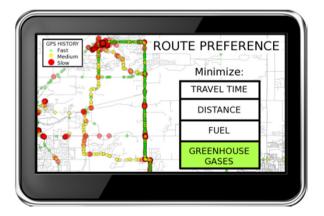
Some projects also included an impact assessment:

- Potential impact of system in real-life situations
- Can include future-casting, scaling up, scenarios

A few of the contributing projects

Background and scope

- eCoMove (<u>http://ecomove-project.eu</u>) Cooperative mobility systems and services for energy efficiency
- FREILOT Urban Freight Energy Efficiency Pilot
- **ecoDriver** (<u>http://ecodriver-project.eu</u>) Supporting the driver in conserving energy and reducing emissions
- **Compass4D** (<u>www.compass4d.eu</u>) Cooperative Mobility Pilot on Safety and Sustainability Services for Deployment
- **CO-GISTICS** (<u>www.cogistics.eu</u>) COoperative loGISTICS for sustainable mobility of goods
- **OptiTruck** (<u>www.optitruck.eu</u>) Optimal fuel consumption with Predictive Power Train Control and calibration for intelligent trucks



• Amitran (<u>www.amitran.eu</u>) – CO2 assessment methodology for ICT in transport

Eco-Navigation

- Dynamic navigation integrates maps with up-todate traffic information (e.g. RDS-TMC information)
- Eco-navigation includes information such as estimated fuel consumption and proposes most fuel efficient route
- Potential CO₂ savings:
- Between 5% and 10% in urban/suburban areas
- Less for longer distance trips

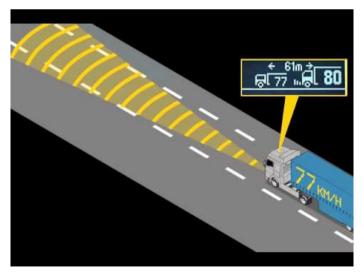
Eco-Driving

- Systems designed to influence driver's behaviour: use of gears, engine braking, anticipation, etc.
- Recognise driving behaviour and provide on-trip advice and post-trip feedback/feed-forward

Eco-Driving

Potential CO₂ savings:

- HGVs: average 10% reduction (mixed roads); Range 0-25% (ecoDriver, 2016)
- Up to 25% CO₂ reduction at junctions, traffic lights, bends, etc.
- Little or no CO₂ benefit in congested situations and limited benefit on motorways
- Scania Driver Support system provides real-time coaching in HGVs with tips and feedback via a visual HMI: 10% improvement in fuel efficiency


Predictive Powertrain Control

- Uses vehicle, infrastructure and topographic data to anticipate a fuel saving driving style
- Focus on the topography, using slope data ahead of the vehicle to generate a predictive speed profile to optimise control of the powertrain
- Potential CO₂ savings:
- Applications on the market from OEMs like Scania (Active Prediction), Daimler (Predictive Powertrain Control) and Volvo (I-See), and an average saving of 5% of fuel/CO₂
- Visual HMI: 10% improvement in fuel efficiency

Cooperative Adaptive Cruise Control (C-ACC)

- Enhancement to ACC systems that can optimise a vehicle's speed profile by adding communication with other vehicles and/or infrastructure
- Potential CO₂ savings:
- Tests on trucks in the euroFOT project found an average 2% fuel saving with C-ACC

Traffic Signal Control

Infrastructure-based and cooperative ITS applications

- Coordination of traffic signals in a network by the use of timing plans (varying by time of day) loaded on a central computer
- Green waves for vehicles with recommended speed
 Potential CO₂ savings:
- 3% to 7% feasible
- Success of green waves depend on traffic patterns
- Measured impact of selective truck priority in FREILOT project in from test sites in Helmond and Lyon found fuel consumption / CO_2 emissions were reduced by 8 to 13%.

Energy Efficient Intersection Services

Infrastructure-based and cooperative ITS applications

• EEIS: Traffic lights which extend green phase to selected vehicles (Compass4D project).

Potential CO₂ savings:

 Measurements in Helmond and Bordeaux showed that the system (which included an in-cab GLOSA service) led to an improvement in HGV CO₂ efficiency (g/km) of 5% - 10% (at intersection level)

Intelligent truck parking & Delivery space booking

Infrastructure-based and cooperative ITS applications

 On-trip reservation system for loading spaces in cities and truck parking on motorways

Potential CO₂ savings:

- Around 20% reduction for delivery vehicles (at the location where they are delivering)
- Very difficult to quantify (percentage CO₂ reduction is only for the part where the delivery takes place)

Many benefits.... but:

Conclusions

Validation & impact assessment depends on:

- road network characteristics
- traffic load
- local topography
- penetration rate of the applications / systems
- driver behaviour

Proposed actions

Conclusions

- Explore and build consensus on how to measure combined effects of several ITS solutions together
- Work towards defining a common Impact Assessment methodology to assess in a comparable way solutions for reducing emissions
- Session at ITS World Congress, Copenhagen to share knowledge and discuss required steps:
 - session SIS38, Tuesday 18 September
 - will work towards ERTICO Clean Mobility Roadmap target to achieve consensus on evidence of environmental benefits of different ITS applications by 2020

Thank you!

Andrew Winder

Project Manager, Clean Mobility <u>a.winder@mail.ertico.com</u> ERTICO website: <u>ertico.com</u> ERTICO Newsroom: <u>erticonetwork.com</u>

