Valuing Convenience in Public Transport in the Korean Context

September 13, 2013

Sungwon Lee, Ph.D.

Vice President The Korea Transport Institute

Contents

I Valuing Convenience: An Empirical Case Study

- Seoul's Transport
- **m** Accomplishments in Public Transport Reforms

IV Discussions

I. Valuing Convenience: A Case Study of Seoul

- **1. Needs for Scientific Transport Policy Intervention**
- 2. Quantitative Policy Impact Analysis
- **3. Policy Implications**

1. Needs for Scientific Transport Policy Intervention

Huge social costs due to transport:

- Congestion cost alone exceeds 27 trillion won annually (about 240 billion US dollars) in Korea

- We usually know about policy impact directions but not about effectiveness
 - This requires quantitative policy impacts analysis
 - Econometric analysis on demand elasticities

Social Costs in Transport Sector

Unsafe Traffic	 Highest level of traffic accident death rate out of OECD (32 nations) - 2.64 death per 10,000 cars in '11 (OECD average death: 1.06 people) 			
Congested Road	 Additional social expenses due to annual increase in congestion fee Congestion Cost : 25.9 Trillion Won('07) → 26.9 Trillion Won('08) → 27.7 Trillion Won ('09) 			
Road Traffic that Accelerates Global Warming	 Road traffic takes up 94.4% of greenhouse gas emissions in transportation Transportation Greenhouse Gas Emission in '09년 : 82.56 million tons CO₂eq (Road Traffic: 77.94 million tons) 			
Increase of Physically Disadvantaged People	 Increase in physically disadvantaged due to entering the aging society 12.418 million in '11 (24.5%) → Expected to increase to approximately 13.120 million in '16 (25.7%) 			
High Logistics Cost	 Decrease in industry competitiveness due to additional logistics expense National Logistics Cost in '09 : 115.499 Trillion Won (Annual average increase of about 1.26%) 			

2. Quantitative Policy Impact Analysis*

- Stated preference methodology for impact analysis of hypothetical transport policy measures
 - Bases for scientific transport policy intervention
- Econometric testing of transport policy related hypotheses
 - Perceived vs. real cost of transport

*Source: Sungwon Lee et al. (2008)

Valuing Convenience

- Concept and definitions of convenience in public transport
 - Amenities
 - Comfort level
 - Time related attributes: headway, in-vehicle time
- As people are more and more addicted to private modes of transport, people demand more comforts in public transports
- Importance of valuing convenience in public transports

Table 1. Elasticities of Demand for UrbanTransportation

Demand	Attributes	Elasticities		
Demanu	Auridutes	Short run	Long run	Overall
Fuel consumption	Fuel price	-0.27	-0.73	-0.48
Car use	Fuel price	-0.33	-0.30	-0.39
Car ownership	Fuel price	*	*	-0.21
Car ownership	Car price	*	*	-0.87
Traffic	Toll fee	*	*	-0.45
Demand for bus	Bus fare	-0.30	-0.65	-0.41
Demand for subway	Subway fare	-0.20	-0.40	-0.20
Demand for rail	Railway fare	-0.70	-1.10	-0.65
Mass transit	Fuel price	*	*	+0.34
Car ownership	Transit fare	*	*	+0.10

Note: Short run means usually within a year, and long run means 5 to 10 years. Source: UK Department of Transport

SP Methodology and Estimation Results

- If variables are too numerous and too widely varied
 → impossible to create all the possible sets of SP questionnaires
- Use fractional factorial plan which analyzes only main effects and guarantee the orthogonality of variables following Kocur et al.(1982) and Hensher(1994)
- SP design of mode choice between passenger cars and alternative modes of bus and subway
- Explanatory variables
 - \rightarrow travel expense, travel time, and service levels

Table 2. SP Design of Mode Choice betweenthe Alternative Modes

Modes	Explanatory	# of	Levels		
Modes	variables	Levels	Level 1	Level 2	Level 3
Basic mode	Fuel price (per litter)	3	Current level (1,200 won)	Increase to 1,500 won	Increase to 1,800 won
(private	In-vehicle time	3	Current level	20% higher	40% higher
automobile)	Monthly parking fee	3	Current level (150,000 won)	40,000 won higher	80,000 won higher
	fare	3	400 won lower	200 won lower	Current level (500~1,000won)
Alternative	In-vehicle time	3	40% lower	20% lower	Current level
mode (bus and subway)	Out-vehicle time	3	50% lower	25% lower	Current level
	Congestion (comfortable)	3	No congestion	Medium congestion	High congestion

Note: US \$ 1.00 is equivalent to 1,120 Korean Won as of Aug 15, 2013

Utility functions

 $U_{oricar} = \alpha + \beta_1 \cdot Fuel + \beta_3 \cdot Ivt + \beta_5 \cdot Park$

 $U_{a \mid t mode} = \beta_2 \cdot Fare + \beta_3 \cdot Ivt + \beta_4 \cdot Ovt + \beta_6 \cdot Crowd$

where *altmode = bus, subway, bus + subway*

- Surveyed on 662 car users → binary choice with multiple levels of attributes → 4,228 effective data sets
- Main purpose of using passenger cars
- Commuting (71.5%)
- ✓ Business trips (16.4%)

Although most variables were statistically significant, fare of mass transit was statistically insignificant

 \rightarrow car users do not consider fare level as significant since fare is significantly smaller than user expense of a car

- Positive car dummy \rightarrow prefer car to mass transit
- Demand elasticity of fuel price is much higher than that of fare level, as fuel expense is far more significant than fare
- Car users respond to bus fare changes more than subway fare changes

- Bigger coefficient of out-vehicle time than that of in-vehicle time → bigger disutility of waiting than riding
- Bus users are more sensitive to in-vehicle time than other modes → recommend express bus or HOV lanes
- Estimated coefficient of parking fees is more than two times bigger than that of fuel prices
 → perceived cost of parking is much greater than fueling and car users are very sensitive to parking fees
- Positive and bigger coefficient of Crowdedness of bus than that of subway → very sensitive to crowded bus

Table 3. Estimation Results of Mode Choice Behavior of Car Users

Variables	$\operatorname{car} \rightarrow$	car → bus		car → bus + subway		car → subway	
variables	coefficient	t-value	coefficient	t-value	coefficient	t-value	
Car dummy	1.6362	5.505	0.99752	5.207	0.50605	2.29	
Fuel price	-1.01E-04	-3.067	-1.17E-04	-5.241	-6.10E-05	-2.848	
Fare of bus or subway	-2.00E-04	-1.456	-1.41E-04	-2.862	-5.40E-05	-0.637	
In-vehicle time	-4.21E-02	-8.106	-2.76E-02	-9.376	-3.80E-02	-10.717	
Out-vehicle time	-4.41E-02	-3.486	-2.81E-02	-5.053	-6.49E-02	-7.089	
Parking fee	-3.63E-04	-6.36	-2.49E-04	-6.188	-2.61E-04	-6.018	
Crowdedness	0.83081	8.38	0.64431	9.306	0.58023	7.508	
ρ ² (Rho square)	0.19		0.20		0.22		
No. of responses	943		1,783		1,502		

3. Policy Implications

- Estimate price elasticities through Sample Enumeration method
 - \rightarrow obtain arc elasticity rather than point elasticity
- Fuel price elasticity of demand for passenger car use
 → -0.078~-0.171(inelastic)
- With 50% increase in fuel price, modal change from car to bus or subway is expected at minimum 3.9% to maximum 8.5%
- Dual users of bus and subway show higher price elasticity than single users → more sensitive to fuel price as they are relatively longer-distance commuters

Table 4. Fuel Price Elasticities of Demand for Car Use and Change of Modal Share

		Fuel Price Elasticities	Modal change from car to transit modes (%)
	10% price increase	-0.086	0.86
	20% "	-0.086	1.72
Car-bus	30% "	-0.086	2.59
	40% "	-0.086	3.45
	50% "	-0.086	4.32
-	10% "	-0.078	0.78
	20% "	-0.078	1.55
Car-subway	30% "	-0.078	2.33
	40% "	-0.078	3.11
	50% "	-0.078	3.88
	10% "	-0.171	1.71
Car-	20% "	-0.171	3.41
bus+subw	30% "	-0.171	5.11
ay	40% "	-0.171	6.79
	50% "	-0.169	8.47

II. Rationale behind Policy Reform

 Estimate cross price elasticity of demand for passenger car use through sample enumeration technique

 \rightarrow 0.016~0.087 (inelastic) in Table 8

 Modal change from car to mass transit with 50% fare decrease → 4.35% at most

 \rightarrow policy of subsidizing transit fare is not expected to reduce car use

Table 5. Fare Elasticities of Demand for Car Use and Change of Modal Share

		Fare (cross price) elasticity	Modal change from car to transit modes (%)
	10% fare decrease	0.058	0.58
	20% "	0.058	1.16
Car-bus	30% "	0.058	1.75
	40% "	0.058	2.33
	50% "	0.058	2.92
	10% "	0.016	0.16
	20% "	0.016	0.33
Car-subway	30% "	0.016	0.49
	40% "	0.016	0.66
	50% "	0.016	0.82
	10% "	0.086	0.86
Car-	20% "	0.086	1.73
bus+subw	30% "	0.087	2.60
ay	40% "	0.087	3.47
	50% "	0.087	4.35

 Test whether "car users consciously perceive parking costs more than fuel costs (Button, 1993)

 \rightarrow whether the estimates of the coefficients of fuel price and parking fees are the same

- → Asymptotic t-test
- → Reject at 5% significance level

$$\frac{\hat{\beta}_i - \hat{\beta}_j}{\sqrt{\mathrm{var}(\hat{\beta}_i - \hat{\beta}_j)}}$$

Table 6. Results of Asymptotic t Test for Indifference between Variables

Modes	Asymptotic t Test Statistic	Results
Car-bus	4.08	Reject null
Car-subway	4.22	Reject null
Car-bus+subway	2.95	Reject null

- Increase of monthly parking fee by US \$33.00
 → decrease car use by 13~15%
- Increase of monthly parking fee by US \$66.00
 → decrease car use by 25~30%
- Each current individual level of parking fee is not the same → cross price elasticity of parking fee cannot be estimated

Table 7. Change of Modal Share due toIncreasing Parking Fee

			Modal change due to the change of parking fee	Modal Change (%)
	Car-bus	Car	$0.660 \rightarrow 0.562$	-15
+40,000	Car-Dus	Bus	$0.340 \rightarrow 0.438$	29
won	Concubration	Car	$0.576 \rightarrow 0.502$	-13
per	Car-subway	Subway	$0.424 \rightarrow 0.498$	18
Month	Car-	Car	0.567 → 0.495	-13
	bus+subway	Bus+subway	$0.433 \rightarrow 0.505$	17
	Carbus	Car	$0.660 \rightarrow 0.460$	-30
+80,000	Car-bus	Bus	$0.340 \rightarrow 0.540$	59
won	Con anhuar	Car	$0.576 \rightarrow 0.428$	-26
per	Car-subway	Subway	$0.424 \rightarrow 0.572$	35
month	Car-	Car	$0.567 \rightarrow 0.423$	-25
	bus+subway	Bus+subway	0.433 → 0.577	33

II. Rationale behind Policy Reform

Time Elasticities, Response to Service Variable, and Policy Effects

- Estimate cross elasticity of in-vehicle time of transit for demand for car use using sample enumeration technique
- Decrease in-vehicle time of transit by 10~50%
 - → cross elasticity 0.46 ~0.57
- Speed of subway improves two folds
 → 29% of car users transfer to subway
- Introducing either express subway transit system or express bus will be an effective policy in reducing car use and traffic congestion in Seoul

Table 8. In-vehicle Time Elasticities ofDemand for Car Use and Modal Share

		In-vehicle (cross) time elasticity	Modal change from car to transit modes (%)
	10% decrease	0.459	4.59
	20% "	0.471	9.42
Car-bus	30% "	0.481	14.43
	40% "	0.489	19.57
	50% "	0.495	24.77
	10% "	0.549	5.49
	20% "	0.559	11.18
Car-subway	30% "	0.567	17.01
-	40% "	0.572	22.89
	50% "	0.575	28.73
	10% "	0.512	5.12
	20% "	0.517	10.35
Car – bus +	30% "	0.520	15.61
subway	40% "	0.521	20.84
	50% "	0.520	25.99

- Estimate cross elasticity of out-vehicle time of transit for demand of car use with sample enumeration technique → smaller than that of in-vehicle time
- Decrease out-vehicle time of transit by 10~50%

 \rightarrow cross elasticity 0.19 ~0.38

- \rightarrow modal change up to 19%
- Policy of increasing frequency of bus and subway

 \rightarrow very effective for promoting use of transit modes and reducing traffic congestion in Korea

Table 9. Out-vehicle Time Elasticities of Demand forCar Use and Modal Share

		Out-vehicle (cross) time elasticity	Modal change from car to transit modes (%)
	10% decrease	0.197	1.97
	20% "	0.200	3.99
Car-bus	30% "	0.202	6.05
	40%"	0.204	8.15
50% "	50%"	0.206	10.28
	10% "	0.364	3.64
-	20% "	0.369	7.38
Car- subway	30% "	0.373	11.20
54.544	40% "	0.377	15.08
	50%"	0.380	18.99
	10% "	0.208	2.08
Car – bus + subway	20% "	0.210	4.19
	30%"	0.211	6.33
	40% "	0.212	8.48
	50% "	0.213	10.65

- Level of service in transit modes is defined as the level of crowdedness in this study
- Decrease congestion of transit modes by one step

 \rightarrow 18~25% of car users transfer to alternative modes

→ improving in-vehicle congestion is very important for promoting the use of transit modes and reducing traffic congestion in Seoul

Table 10. Car Users' Response to ServiceVariable of In-vehicle Congestion

		Change of modal share
Car-bus	Improving one step	25.05 % from car to bus
Car-Dus	Worsening one step	21.92 % from bus to car
	Improving one step	17.85 % from car to subway
Car-subway	Worsening one step	17.47 % from subway to car
Car – bus	Improving one step	20.71 % from car to bus + subway
+ subway	Worsening one step	20.46 % from bus + subway to car

II. Rationale behind Policy Reform

Public Transit User Subsidy and the Policy Effectiveness

- If 100% public transit user subsidy is implemented, 18% of current private vehicle user will switch over to public transport
- If this policy is supplemented by commuter parking fee increase (\$ 100/month), the modal share change is estimated at 28%.

II. Rationale behind Policy Reform

Table 11. Car Users' Response to Public Transit User Subsidy

Policy Scenarios	Commuting Mode	Modal Share	Conversion Rate to Public Transport	90% Confidence Interval	
D II	Private Car	39.6			
Baseline	Public Transport	60.4	N.A	N.A	
5% Public Transport	Private Car	36.8	4.7	3.1~6.2	
Subsidy	Public Transport	63.2	4./	3.1~0.2	
0% Public Transport	Private Car	34.0	9.3	8.0~10.4	
Subsidy	Public Transport	66.0	7.5		
5% Public Transport	Private Car	31.4	- 13.6	12.4~14.8	
Subsidy	Public Transport	68.6	13.0	12.4~14.8	
100% Public Transport Subsidy	Private Car	29.0	- 17.7	16.1~19.2	
	Public Transport	71.0		10.1~19.2	

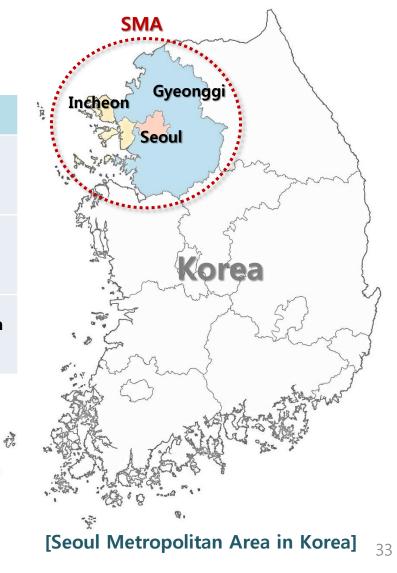
Summary of Policy Implications

- Could analyze the effects of hypothetical TDM policies in terms of modal changes utilizing elasticity estimates
- Ineffective policy measures
- ✓ Small effect of fuel price policy
- ✓ Fare related policy (Excluding user subsidy)
- Effective policy measures
- Parking regulation or pricing policy
- Express bus, express urban trains, and HOV lanes
- Reducing crowdedness in bus and subway through increasing frequency
- Public transit user subsidy

II. Seoul's Transport*

- **1. General Information**
- 2. Changes in Seoul: Urban Sprawl
- 3. Changes in Seoul: Motorization
- 4. Changes in Seoul: Infrastructure
- 2. Changes in Seoul: Transport Conditions

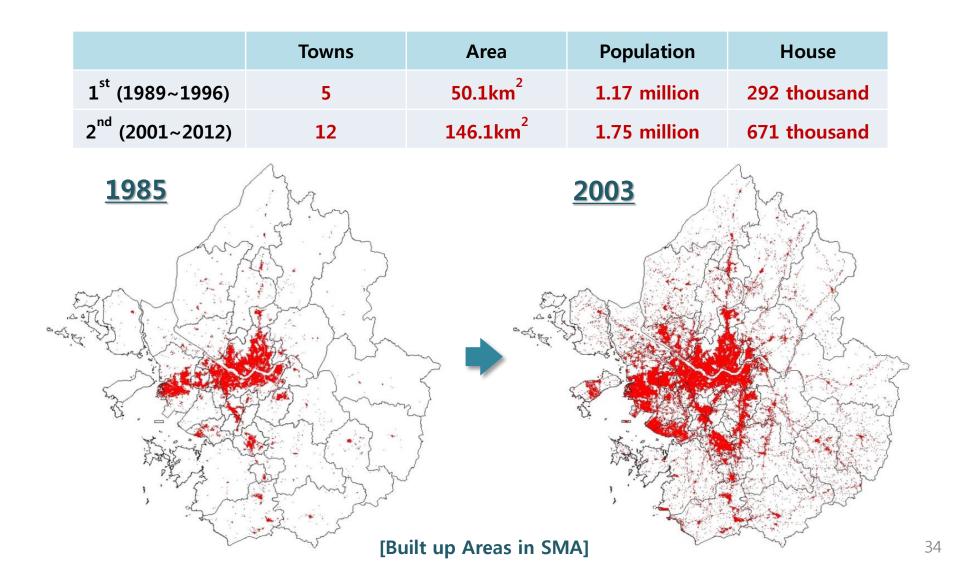
PORT INSTITUTE


*Source: Jin Young Park, Public Bus Service Modernization (2013)

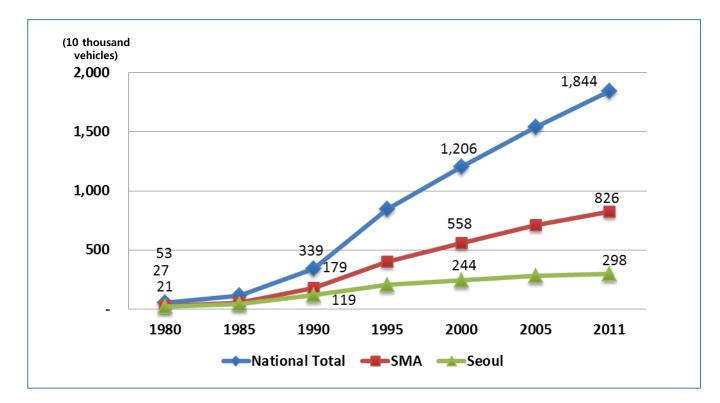
1. General Information

SMA: Seoul, Incheon and Gyeonggi

	Seoul	SMA
Area	605.2 km ² (0.6%)	11,818 km ² (11.8%)
Population	10.0 million (20.1%)	26.6 million (49.3%)
GRDP	283,651 billion won (22.8%)	585,978 billion won (47.1%)


* Source: e-National Indicators (2011)

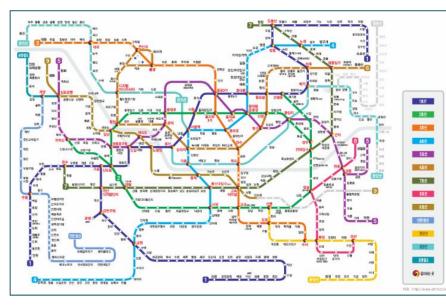
2


28

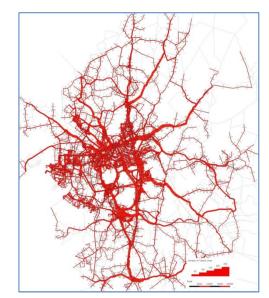
2. Changes in Seoul : Urban Sprawl

3. Changes in Seoul : Motorization

Seoul: 0.02 (1980) → 0.11 (1990) → 0.24 (2000) → 0.3 (2011) veh/person

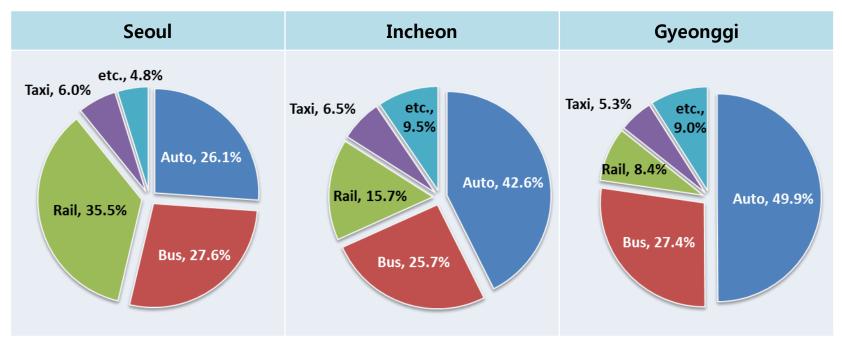

[Trends of Vehicle Registration]

^{*} Source: e-National Indicators (2011)


4. Changes in Seoul : Infrastructure

Transport Infrastructure

	Seoul	SMA
Road	8,199 km	24,070 km
Bus	447 Lines (9,340 Vehicles)	3,694 Lines (26,847 Vehicles)
Railway	346.3 km (321 Stations)	825.2 km (521 Stations)


[Railway Networks and Stations in SMA]

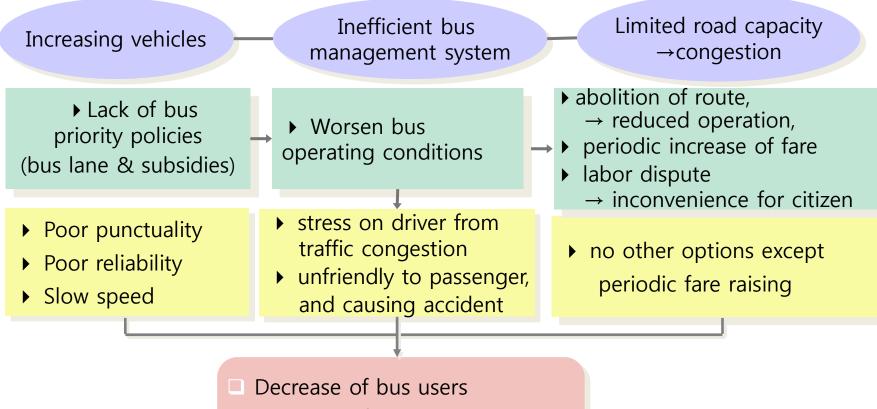
[Bus Network and Capacity in SMA]

5. Changes in Seoul : Transport Conditions

Daily Trips and Mode Share

- Seoul intra-city trips: 20,011 thousand trips per day
- SMA intra-city trtips: 49,660 thousand trips per day

* Source: Metropolitan Transportation Authority


III. Inferences from the Public Transport Reforms

- **1. Public Transport Reform in Seoul**
- 2. Bus System Modernization
- 3. Outcome of the Reform

1. Public Transport Reforms

Vicious Circle of Bus Service

- Abolition of bus service
- Bankrupt of bus company

Vicious Circle of Bus Service

Unstable Service by deteriorated bus company

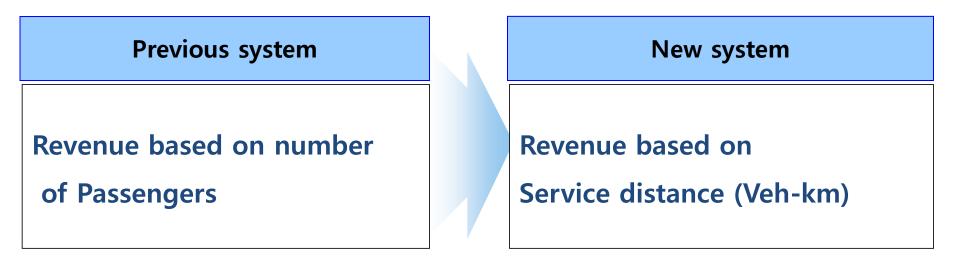
Unpunctuality, abolition of bus routes

Unstable employment

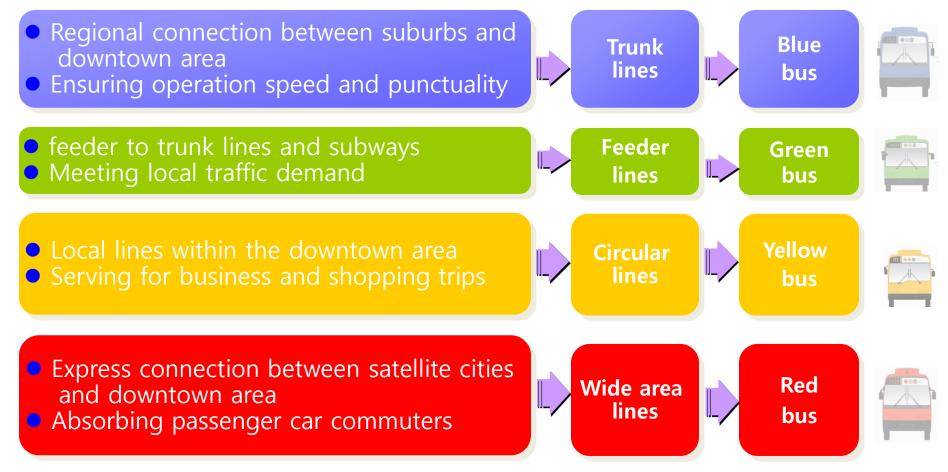
Continuous reduction of labor (driver's low salary)

Excessive competition to increase revenue

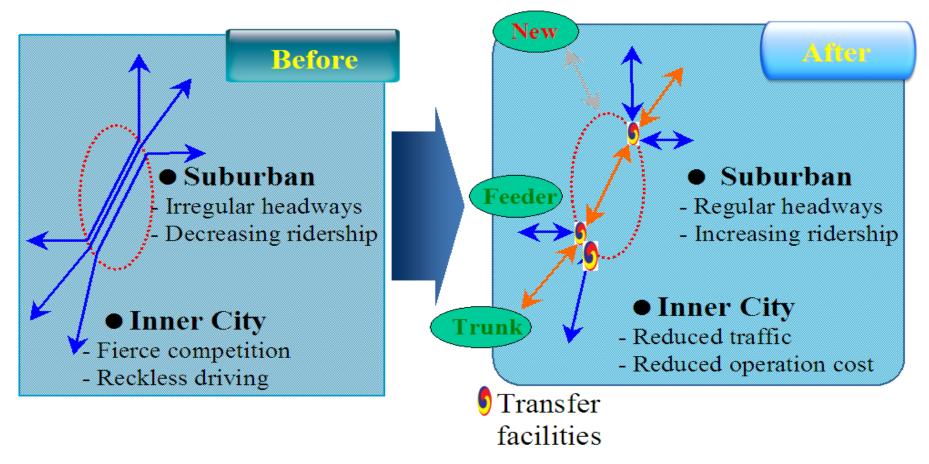
✤ Reckless driving : accident, uncomfortable ride

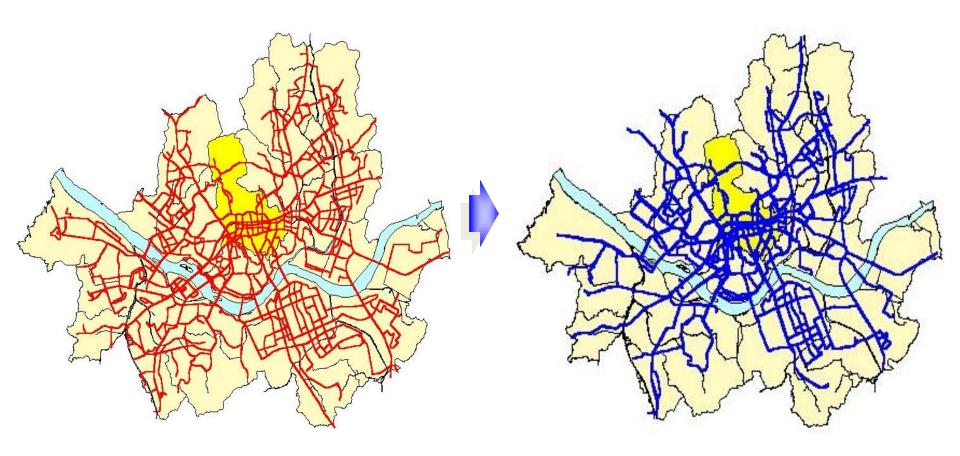

Routes owned by private bus company

✤ Hard to adjust routes by demands


- Operation Scheme : New revenue system
- Network : Trunk & Feeder
- Fare : Distance-based free transfer fare with smart card
- Information : Bus Management/Information System
- Infrastructure : Exclusive bus lane, Station improvement
- Fleet : CNG bus, Low-floor bus

Operation Scheme


- Introduction of bidding main routes
- Joint management of revenue
- Reform of revenue structure based on operating distance

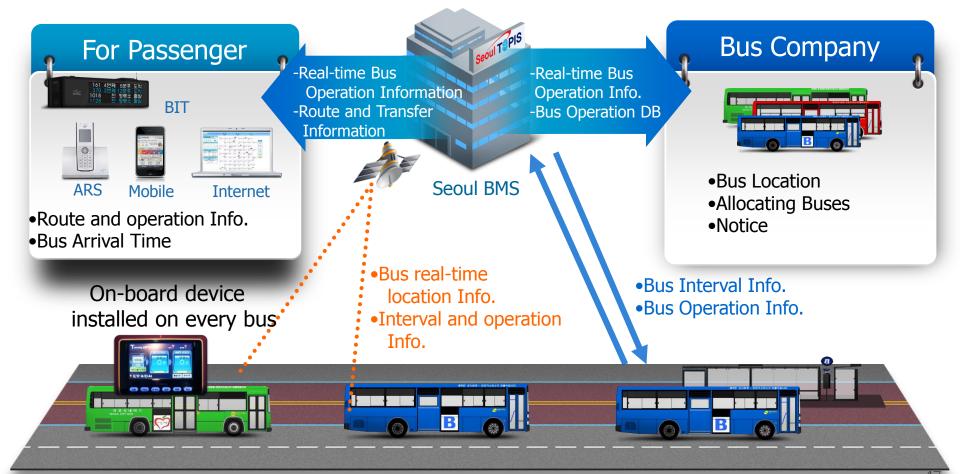

Network : Trunk Lines · Feeder Lines · Circular · Wide Area

Network : Trunk & Feeder

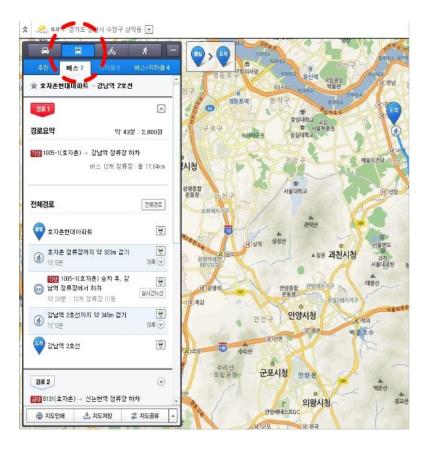
Network : Trunk & Feeder

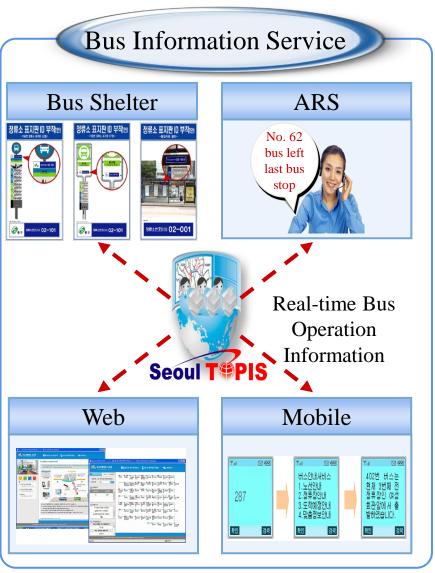
Distance based fare

- Subway single trips
 - : fare according to distance-traveled
 - (basic fare : 1,000 Korean won (1 US Dollar) up to 12 km; extra fare of 100 Korean won for every additional 6 km)
- Bus single trips : single fare of 1,000 won


Free of charge for transfers

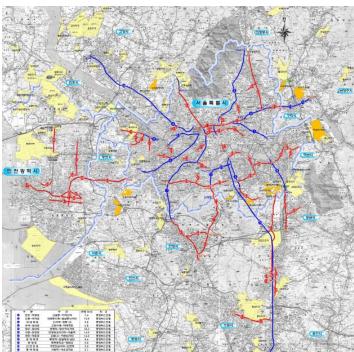
- For transferring trips
 - : accumulated distance-based fare system
 - \rightarrow (basic fare up to 10km;
 - extra fare for every additional 5 km)





Bus Management System : Efficient management of bus services

Bus Information System



Exclusive Bus lane

- Provides faster and reliable travel within the service area
- Seoul Metropolitan Area: 13 corridors, 157km (2011)
- Attracts patronage from private vehicles

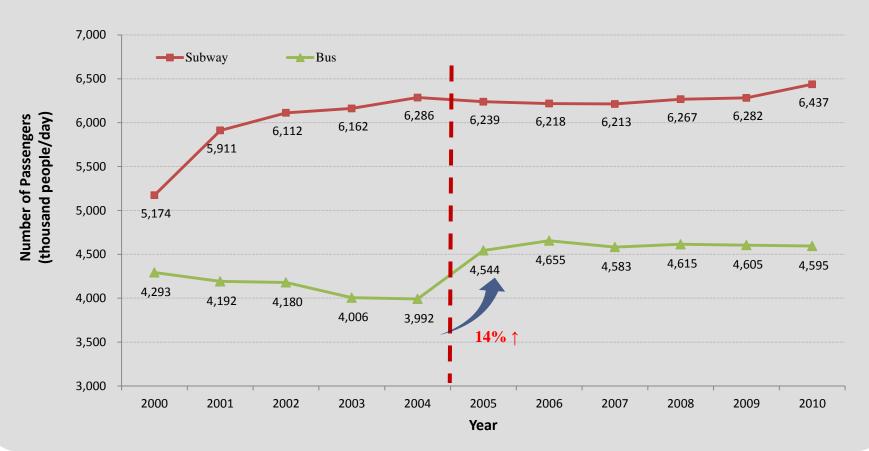
Median exclusive bus lane

Bus lane Network In Seoul

Bus Station Improvement

Stops Improvement

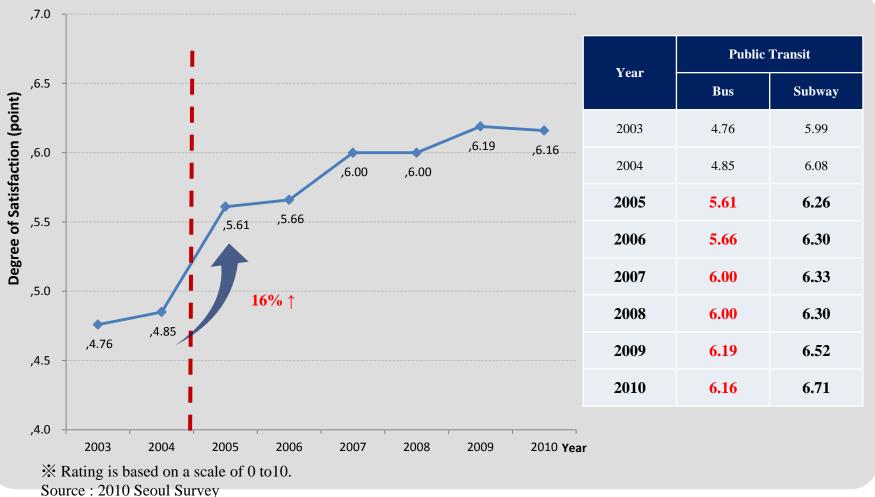
Shelter & Fence installation



Fleets

Trunk lines	Major lines	Articulated buses, Low-floor buses, CNG buses	
	Aux. Trunk lines	Low-floor buses, CNG buses	
Feeder lines		Medium-sized buses	
Circular lines		Medium-sized buses	

3. Outcome of the Reforms


Increase in Public Transport Patronage

X Subway ridership excludes free-pass holders. Source : Seoul Year Book

Trend of Citizen's Satisfaction Degree for Transit Services

Satisfaction rate for Bus Service

Valuing Convenience in the Korean Context

Seoul's public transport reform is successful in attracting public transport's patronage

Increased competitiveness of public transport

Increased convenience level of public transports

- ➤ Reduced travel time
- ✤ Free transfers
- ✤ BIS system improvements

Empirical evidences of the importance of convenience in public transport

IV. Discussions

Thank You. (swlee@koti.re.kr)

