LCA National Highways of India

Sharif Qamar TERI, New Delhi

Creating Innovative Solutions for a Sustainable Future

Life cycle assessment methods to support India's efforts to decarbonise transport

April 14, 2021

About the study		
Title	Reducing Carbon Footprint and Enhancing Climate Resilience of National Highways in India	
Supported by	Ministry of Road Transport and Highways and the World Bank	
Aim	 To suggest strategies for reducing carbon footprint of NH network in India To suggest strategies for enhancing the resilience of NH network to extreme climate change induced events 	
Project Reports: https://www.terijn.org/project/reducing-carbon-footprint-and-enhancing		

Project Reports: <u>https://www.teriin.org/project/reducing-carbon-footprint-and-enhancing-</u> <u>climate-resilience-national-highways-india</u>

INTERLINKED OBJECTIVES

REDUCTION OF CARBON FOOTPRINT OF NATIONAL HIGHWAYS

OBJECTIVES

- To determine the **overall carbon footprint** of the NH network
- To suggest low carbon interventions for the highway sector
- To estimate carbon reduction potential of developing 'good-quality' highways vis-à-vis 'poorly-maintained' highways
- To provide recommendations for mainstreaming of strategies, policies and enabling actions for low carbon NH sector

Life Cycle Assessment (LCA)

LCA is a systematic way of evaluating the environmental impacts of products or activities by following a **'cradle to grave' approach** - it involves identification and quantification of **material and energy consumption** and **emissions** which affect the environment at all stages of the entire product of life cycle (ISO 14042)

Estimating Carbon Footprint of NH sector -Approach

Life Cycle Analysis Approach Adopted

Total CO₂ emissions over the *full life* cycle of NHs considered

Methodology

LCA approach selected to undertake carbon footprinting of NH network

International and Indian studies on carbon footprint estimates

Name of study	Design life of the road considered	Pavement typology	CO ₂ emissions/embodied energy during the three phases of highway's life					
			Construction	Maintenance	Operations			
	International studies							
Life Cycle Assessment of Road: A Pilot Study for Inventory Analysis (Stripple, 2001)		Asphalt pavement	23 TJ/km (Embodied Energy) [Construction, maintenance and operations data combined value was available]					
		Concrete pavement	27 TJ/km (Embodied Energy) [Construction, maintenance and operations data combined value was available]					
Carbon Footprint for HMA and PCC Pavements (Mukherjee, 2011)	15 years	Asphalt pavement	511.27 (MT CO ₂ Eq./year/lane more and combined value was		maintenance and			
The Greenhouse Gas Emission from Portland Cement Concrete Pavement Construction in China. (Feng Ma, 2016)	Not indicated in the study/ paper	Concrete pavement	2,053.83 (ton CO ₂ /lane km)	x	x			
		Indian st	udies					
Methodology for Estimating Carbon Footprint of Road Projects: Case Study India (Asian Development Bank, 2010)	22 years	Asphalt pavement [NH (MP/UP): East West Corridor; 4 lane]	24 (ton/lane km/year)	2.8 (ton/lane km/year)	826.7 (ton/lane km/year)			
Life Cycle Analysis of Transport Modes (TERI, 2012)	30 years	Asphalt pavement [Rohtak-Bawal NH-71; 4 lane]	28.7 (ton/lane km/year)	x	x			
		Asphalt pavement [Delhi-Agra NH-2; 6	x	5.97 (ton/lane km/year)	x			

Estimating Carbon Footprint of NH sector – Approach (C&M)

LCA approach selected to undertake carbon footprinting of NH network (consonance with International and Indian best practices¹)

Construction & Maintenance phases Estimation of project level CO₂ emissions (tonnes CO₂ per lane km per year)

Extrapolation of project level estimates to derive CO₂ emissions from entire NH sector

CO₂ emissions during Construction & Maintenance phases for entire NH

TERI's excel-based model developed as part of this study

Phases and processes involved in Calculating CF (C&M)

Selecting representative NH for CF Estimation

Estimating Carbon Footprint of NH sector – Approach (Operations)

Creating Innovative Solutions for <u>A</u> Sustainable Future

Project level estimates – Representative Stretch Locations

 Primary data of 11 National Highways covering 860 km used to estimate CO₂ emissions for construction and maintenance phases

Project level Estimates - Key Findings

CO₂ emissions on account of embodied carbon in materials is in the range of 72% to 95.4% of the total construction phase for the sample projects

Emphasizes the need to use low carbon/local materials

Stretch-wise emission share of transport of materials, fuel, etc.; on-site energy consumption; and embodied materials on account of construction

(Source: TERI Analysis, 2016)

Creating Innovative Solutions for a Sustainable Future

Project level Estimates - Key Findings

CO₂ emissions on account of **movement of** materials from source to site of consumption is in the range of **4% to 26%** of the total construction phase for the sample projects

Emphasizes the need to reduce the lead/use of efficient mode of transportation

Stretch-wise emission share of transport of materials, fuel, etc.; on-site energy consumption; and embodied materials on account of construction (Source: TERI Analysis, 2016)

Creating Innovative Solutions for a Sustainable Future

Project level Estimates - Key Findings

- Number of cycles of periodic maintenance also has a large implication on the resulting emissions from maintenance phase
- Preventive maintenance techniques help in extending the lifetime of road pavements
- Good riding quality leads to higher vehicle efficiencies, lower emissions, and cost savings

CO₂ emissions of entire NH network – **C&M phases**

Scaling up of project-level emissions

- Use of emission factors per lane km for construction and maintenance for different terrains to arrive at National-level CO₂ emissions
- The two phases account for about 14% of the total CO_2 emissions from the NH sector

Co₂ emissions - Operations phase

Growth trajectory of CO₂ emissions from vehicular operations on National Highways

Operations phase accounts for 86% of the total emissions from the 3 phases

Creating Innovative Solutions for a Sustainable Future

Co₂ emissions - Operations phase

Largest share of vehicular emissions on highways is from HDVs (47% in 2016-17), followed by bus and omnibus, cars, and LCVs

Category-wise CO₂ emissions from vehicular operations on Indian NH network

Total CO₂ emissions – NH Sector (2016 & 2030)

Operations phase is expected to continue to account for the maximum share in CO₂ emissions between 2016 and 2030 (i.e. 86%)

CO₂ emissions on account of construction, operation and maintenance of National Highways in India during 2016 and 2030

Interventions for emission Reduction (Operations Phase)

Interventions for emission Reduction (Operations Phase)

Creation of Carbon Sink through afforestation and reforestation

Increase share of public transport

It is recommended that the process of tree plantation under the National Green Highways Mission be expanded to cover the entire NH length

If measures undertaken to retain and improve share to 72%, corresponding reduction in emissions will be 10%

Creating Innovative Solutions for <u>23</u> Sustainable Future

INTERVENTIONS FOR EMISSION REDUCTION (CONSTRUCTION AND MAINTENANCE PHASE)

INTERVENTIONS FOR EMISSION REDUCTION (CONSTRUCTION AND MAINTENANCE PHASE)

Mainstreaming Interventions (construction and maintenance phases)

Topics	Recommendations
Developing National Highway Carbon Estimates for construction and maintenance phases	 The excel-based National Highway model/tool developed by TERI to estimate CO₂ emissions during construction and maintenance phases could be used by the DPR consultants while undertaking project feasibility studies The DPR consultants will require training
ʻGreen Rating System' for Indian National Highways sector	 Using TERI's excel-based NH model, NHAI/MORTH could develop a compendium of emissions estimated for various NH projects Based on this, a 'Green Rating System' could be initiated, which would help quantify the performance of National Highway projects on a carbon footprint scale. A pool of experts for evaluating carbon emissions could be housed in MORTH under an appropriate department/unit proposed in Component II of the study
Better data management for estimating carbon footprint of NHs	 For a number of projects, complete data was not available for the estimation purpose. A data template has been suggested, which could be used for energy and carbon emission related estimation

Mainstreaming Interventions (construction and maintenance phases)

Topics	Recommendations
Updating/enforcing IRC Guidelines and Codes for construction materials and methods	 There are several materials/methods which are covered under the IRC Guidelines/Rules but are not deployed or used due to various reasons For these materials, more awareness or more demonstration projects need to be undertaken.
Construction materials/ methods not under IRC Guidelines/Codes	 More R&D and pilots projects need to be undertaken regarding such products with the help of PWDs and research organizations like CRRI Adding these materials in IRC guidelines will give an option to the contractors to procure locally available materials and reduce the lead for procuring conventional materials from far off places
Constitution of R&D Innovation Support Fund	 R&D innovation support fund should be constituted to encourage/promote the use of green materials/technologies. Some part of the incremental cost on account of using alternate/green materials could be borne by the implementing authority.

Solutions for <u>27</u> Sustainable Future

Mainstreaming Interventions (construction and maintenance phases)

Topics	Recommendations			
•	Government should ensure that certain percentage of National Highways should be developed using green materials or technologies			
•	The additional cost burden should be shared, where the government/authority could use the R&D Innovation Support Fund to promote green materials/technologies			
• Other policy and DPR related • suggestions	In the bidding document, competitive advantage should be given to the bidders/contractors who are keen to use green material/technology while constructing National Highways			
•	To encourage the use of green/alternate materials in National Highways, life cycle analysis should be made mandatory for every project. In addition, the total life cycle cost and emissions of projects should be be compared under two scenarios:			
	- Scenario 1: When conventional materials/technologies are used			
	- Scenario 2: When green/alternate materials are used			

Solutions for <u>28</u> Sustainable Future

TERI study on urban transport LCA

A life cycle analysis of urban public transport systems in Indian cities

- BRTS
- MRTS
- <u>http://www.codatu.org/wp-content/uploads/A-Life-Cycle-Analysis-of-Urban-Public-Transport-Systems-in-Indian-Cities-Shri-Sharif-Qamar-TERI-India.pdf</u>

Selected TERI Reports

- ***** Faster adoption of electric 2W in India: A perspective of consumers and industry
- * <u>Switching to a Sustainable Auto-rickshaws System</u>
- Integrating electric buses in public transport: Kolkata's success story
- Roadmap for Electrification of Urban Freight in India
- * Benefits of Cycling in India
- Impact of COVID-19 on urban mobility in India: Evidence from a perception study
- * Making Mission Possible: Delivering a Net-Zero Economy
- * Increasing the Rail Share in Freight Transport in India
- Comparison of Decarbonisation Strategies for India's Land Transport Sector: An Inter Model Assessment
- * <u>Reduction of Carbon Footprint in Highways Sector</u>

Creating Innovative Solutions for a Sustainable Future

Thank you

Please Contact: Sharif Qamar Centre for Sustainable Mobility, TERI <u>Sharif.Qamar@teri.res.in</u>

Creating Innovative Solutions for a Sustainable Future