Life cycle greenhouse gas emissions for algal biofuels: Effect of different CO₂ supply options

Pratham Arora Hydro and renewable Energy Department IIT Roorkee

Research at IIT Roorkee

Vehicular emission inventory modeling, Evaluation of co-benefits in transportation sector, Estimation of exhaust and non exhaust emissions from transport sector, Enhancing Production of Biodiesel from Microalgae for Environment Friendly Transport, Sustainable Transportation Systems (**Prof. Bhola Gurjar**)

Artificial Intelligence and Machine Learning for Environmental Data, Data Mining and Big Data Analysis (**Prof. Durga Toshniwal**)

Mapping of Dynamic Air Pollution Information to the Choices of Travelers, Transport negative externalities, Air Pollution Exposure, Transport Modelling and Simulation (**Prof. Amit Agarwal**)

Life cycle assessment of electric vehicles and biofuels, process simulation and optimization of biofuels, Integrated Assessment Modelling (IAM) of EVs and Biofuels. (Prof. Pratham Arora)

Introduction

Why make fuels from algae?

- Algae **require CO2** for growth, therefore fuel is **potentially low carbon**.
- Possible integration to achieve **low-cost CO2 sequestration** and nutrient remediation.
- Uses all nutrients, minimizing eutrophication.
- Biodegradable, so minimal issues with accidental spills /leaks.
- Uses underutilized land, e.g. deserts.
- Yields >10x those for land plants, so much less land is needed.
- Certain species can grow in salty or brackish water.

CO2 supply to algal biorefinery

- A major challenge faced by algal biorefinery is the sustainable supply of carbon dioxide.
- CO₂ requirements are responsible for 10-30% of biorefinery raw material cost.
- It is very important to quantify the CO₂ emissions for production and transport of CO₂.
- The present study compares the global warming potential (GWP) of different CO₂ supply scenarios, utilizing a functional unit of 1
 MJ of refined bio-crude.

CO₂ supply to algal biorefinery

Methodology

- Different CO₂ supply scenarios have been modelled in a steady state process simulation software ASPEN Plus[®].
- The study considers separate day and night operations for the CO₂ supply cases, because algae growth only takes place during the daytime.
- A cradle-to-gate LCA study was carried out with the help of MS Excel worksheets for different process variants.

Methodology

- The different CO₂ supply scenarios that are considered in the present study utilize the flue gas from a
 - Flue gas from a legacy coal-based power plant
 - Flue gas from a legacy natural gas-based power plant
 - Flue gas from a purpose-built natural gas combined cycle (NGCC) plant
 - Flue gas from purpose-built biomass combustion plant.
 - CO₂ supply from a purpose-built direct air capture (DAC) system
- The power plants are assumed to located at a distance of 2 miles from the biorefinery.
- The standalone NGCC unit and the biomass combustion units are assumed to be constructed at the algal biorefinery.

Coal power plant flue gas

Natural gas power plant flue gas with carbon capture

	Natural gas-based power plant	Coal- based power plant
N ₂	75.6	65.4
O ₂	11.6	4.1
H ₂ O	8.5	18.6
CO ₂	4.3	11.9
Temperature (°C)	82	60

Natural gas power plant flue gas

Natural gas boiler

Standalone NGCC flue gas with carbon capture and refrigeration

Biomass combustion and gasification flue gas

https://mam.tubitak.gov.tr/en/teknoloji-transferofisi/coal-and-biomass-combustion-gasificationsystems-and-plant-installation

Direct air capture

Results

GHG emissions (kg CO2 eq./MJ refined bio-crude)

Conclusions

 CO_2 supply from the combustion of biomass has the lowest GHG footprint for the delivered CO_2 .

Construction of a **standalone NGCC unit** near the biorefinery has the **highest GHG footprint**. However, the GHG footprint of such a plant is very **sensitive** to the **grid electricity carbon footprint** as well as emissions from the supply chain of natural gas feedstock.

The fossil fuel power plant CO_2 supply has positive emissions for supplying stack gases and is expected to become prohibitive as the distance between the power plant and biorefinery increases.

The results provide a **benchmark for comparison of different CO**₂ **supply options** for the establishment of a sustainable algal biorefinery.