For Official Use

ITF/OECD/JTRC/TS6(2008)1/ANNEXES

Organisation de Coopération et de Développement Économiques Organisation for Economic Co-operation and Development Forum International des Transports International Transport Forum

09-Jul-2008

English - Or. English

International Transport Forum
Joint OECD/ITF Transport Research Committee

Workshop on Motorcycling Safety

WORKSHOP ON MOTORCYCLING SAFETY held in Lillehammer (Norway) on 10-11 June 2008

ANNEXES TO THE FINAL REPORT

JT03248828

TABLE OF CONTENTS

NICK ROGERS	3
ANNEX 2 THE RIDERS AROUND THE WORLD PRESENTATION BY HANS PETER STRIFELDT	8
ANNEX 3 RESULTS OF THE MAIDS PROJECT PRESENTATION BY JACQUES COMPAGNE	14
ANNEX 4 MOTORCYCLE CRASHES IN THE UNITED STATES	23
ANNEX 5 MOTORCYCLE SAFETY IN SWEDEN PRESENTATION BY ORJAN ELLSTROM	28
ANNEX 6 TRENDS IN MOTORCYCLE CRASHES IN EUROPE PRESENTATION BY SASKIA DE CRAEN	34
ANNEX 7 MOTORCYCLING SAFETY POLICIES: THE MOTORCYCLIST'S VIEWS PRESENTATION BY ALINE DELHAYE	37
ANNEX 8 THE UK MOTORCYCLING STRATEGY PRESENTATION BY ANDREW COLSKI	48

ANNEX 1 TRENDS IN THE MOTORCYCLE FLEET WORLDWIDE PRESENTATION BY NICK ROGERS

ITF/OECD/JTRC/TS6(2008)1/ANN

ITF/OECD/JTRC/TS6(2008)1/ANN

ANNEX 2 THE RIDERS AROUND THE WORLD PRESENTATION BY HANS PETER STRIFELDT

The Professional Rider

(Kansas Police)

International Transport Forum

International Transport Forum

International Transport Forum

ITF/OECD/JTRC/TS6(2008)1/ANN

(Stammtisch in Germany)

The Worldwide social and political « motorcycling Network » (Web Forum)

3. Safety Consciousness within the Motorcycling Community

The philosophically founded antisafety-armour attitude

ITF/OECD/JTRC/TS6(2008)1/ANN

The Safety Conscious Riders

The Safety Dialogue (Screening by MAG Belgium)

But motorcycling can never be risk free...

4. Why some people « choose » to be vulnerable road users?

Most people do not have the choice between a motorcycle and a car (Taiwan)

How to improve motorcycle safety?

The motorcycle community gathers the real experts and can greatly contribute in improving motorcycle safety...

Thank you for your attention!

ANNEX 3 RESULTS OF THE MAIDS PROJECT PRESENTATION BY JACQUES COMPAGNE

Motorcycle Accidents In-Depth Study

Jacques Compagne Secretary General of ACEM

Content

Presentation of the study

- Introduction
- · Main features
- Main figures

Discussion / What does MAIDS tell us?

Time to Decide

- Improvements in MC safety are essential:

 - Future of motorcycling
 Positive contribution that motorcycling brings to society
- · But, not enough information was available to develop an integrated safety policy and action plan

· Need of in-depth accident study

Decision

- To provide the scientific basis for the discussion of MC accidents in Europe:
 - ACEM organised the Motorcycle Accident In-Depth Study (MAIDS);

 - Created a Consortium of partners, namely:
 DG TREN of the European Commission, who co-financed the project.
 - Other partners: BMF, CEA, CIECA, FEMA, FIM.

bmf

ón y reconstrucción de accidentes de tráfico

Who and Where?

· For data collection

- France

Centre Européen d'Etudes de Sécurité et d'Analyse des Risques MUH

- Germany Medical University of Hanover Uni Pavia - Italy

University of Pavis
TNO - Netherlands

land's Organization for applied scientific research Nederland' REGES - Spain

· For statistical analysis

- Uni Pavia (Italy)

MEIDS Main Features

- OECD methodology
- · Basic parameters of accidents
- In-depth data on human, vehicle and roadside factors (about 2000 variables per case)
- Data on collision dynamics
- · Data on injury types and severity
- · Data on accident causation

All 921 accident cases reconstructed

· Allowing MAIDS teams to identify

Accident contributing Factors

- · For each case
 - One single **primary** accident contributing factor
 - Four additional accident contributing factors
 - Attributed to
 - Human
 - Vehicle
 - Environment

MEID Main Features

· Exposure data

MEID Main Figures

· Distribution of cases and controls according to category

MEID Main Figures

· Distribution of cases and controls according to category

	Accident data		Exposure dat	a
	Frequency	Percent	Frequency	Percent
L1 vehicle - mofa	28	3.0	49	5.3
L1 vehicle - other	370	40.2	324	(35.1)
L3 vehicle	523	(56.8)	550	59.6
Total	921	100.0	923	100.0

- L1 = 40 %, over-represented (moped only)
 L3 = 57 %, no over-representation

MEID Main Figures

· Distribution of fatal and non-fatal cases

Table	3.2: Number of	f fatal cases	200000000000000000000000000000000000000
	Fatal	Not fatal	Total
University of Pavia (Italy)	11	189	200
TNO (Netherlands)	15	185	200
REGES (Spain)	12	109	121
ARU-MUH (Germany)	49	201	250
CEESAR (France)	16	134	150
Total	103	818	921

- Fatal 11 %
 - L1 = 24 %, under-represented
 L3 = 76 %, over-represented
- Non-fatal 89 %

MEID Main Figures

· Distribution of single and multi-vehicles accidents

	Frequency	Percent
None (single vehicle accident)	143	15.5
One	738	80.2
Two	36	3.9
Three	4	0.4
Total	921	100.0

- Single 16 %
- Multi-vehicle 84 %

ITF - Molorcycle Workshop - Littehammer, June 10th & 11*, 2008

Content

Primary Accident Contributing Factors

· Vehicle factors: 0,3% of all cases

	Frequency	Percent
Vehicle	3	0.3
Total	921	100.0

Additional Accident Contributing Factors

- · Vehicle factors:
 - PTWs: 1,6 % of all cases
 - OVs: 0,5 %

	Frequency	Percent
PTW technical failure	32	1.6
OV technical failure	10	0.5
Total	2059	100.0

ITF - Motorcycle Workshop - Littehammer, June 10th & 11*, 2008

PTW Style

- Frequency

PTW Gross Mass

- Frequency

 - < 100 kg: 43 % 151 200 kg: 21 %
- No associated risk
- · Except for PTWs over 250 kg under-represented

		PTW	gross mas	5	
		Accident	Accident data		e data
		Frequency	Percent	Frequency	Percent
	under 100	393	42.7	355	38.5
	101 - 150	97	10.5	85	9.2
	151 - 200	193	20.9	183	19.8
	201 - 250	153	16.6	195	21.1
_	over 250	43	(4.7)	105	(11.4)
	Unknown	42	4.6	0	0.0
	Total	921	100.0	923	100.0

PTW Engine Displacement

- Frequency
 50 cc: 43 %
 501 750 cc: 22 % of all cases
- · No associated risk
- · Except for the over 1001 cc category under-represented

	Accident data		Exposur	e data
	Frequency	Percent	Frequency	Percent
up to 50 cc	394	42.7	367	39.8
51 to 125 cc	89	9.7	86	9.3
126 to 250 cc	37	4.0	32	3.5
251 to 500 cc	56	6.1	50	5.4
501 to 750 cc	206	22.4	193	20.9
751 to 1000 cc	80	8.7	107	11.6
1001 or more	58	(6.3)	88	9.5
Unknown	1	0.1	0.0	0.0
Total	921	100.0	923	100.0

Content

Presentation of the study

MAIDS highlights

- Environmental factors
 Accident causation
 Worsening factor

Primary accident causation factor

· Environmental factors: 8 %

	Frequency	Percent
Environmental	71	7.7
Total	921	100.0

Weather 2 % 1 % 1 % Road maintenance defect Road design defect Traffic hazard

Additional Accident Contributing Factors

· From the road environment: 15%

	Frequency	Percent
Environmental cause	300	14.6
Total	2059	100.0

WeatherRoad Maintenance defectRoad design defect Traffic hazard

Worsening Factors

- Roadway and fixed objects: second collision partner with 17 % of MAIDS cases
 - L1 = 9 % L3 = 23 %

Fixed object	74	8.0
Roadway	83	9.0

(Directive on Road Safety Infrastructure Management)

Content

Presentation of the study

MAIDS highlights

- Human factors
- - Accident causation
 Accident population
- Collision dynamics
- Injuries

Primary Accident Contributing Factors

· Human factors: 88 % of all cases

	Frequency	%
Human-PTW rider failure	344	37.4
Human-OV driver failure	465	50,5
Total	809	87,9

- OV drivers: largely responsible for PTW crashes
 - 50 % of all MAIDS cases (L1 = L3)
 61 % of the multi-vehicle accidents
- · PTW riders: responsible of 37 % of PTW crashes

 - L1 = 39 % L3 = 36 %

ITF - Motorcycle Workshop - Lifehammer, June 10th & 11*, 2008

Primary Accident Contributing Factors Fatal Cases

. Human factors: 86 % of all cases

	Frequency	%
Human-PTW rider failure	54	52.4
Human-OV driver failure	34	33.3
Total	88	85,7

- PTW riders: largely responsible for PTW fatal accidents
 - 52 % of MAIDS fatal cases
- · OV drivers: responsible of
 - 33 % of all MAIDS fatal cases
 44 % of the multi-vehicle fatal accidents

Primary Accident Contributing Factors

- 921 cases reconstructed
- · Primary contributing factors classified
 - Perception
- Comprehension
 - Decision

Primary Accident Contributing Factors

ITF - Motorcycle Workshop - Littlehammer, June 10th & 11*, 2008

Primary Accident Contributing Factors

· The most frequent : perception failure by the OV drivers

Primary Accident Contributing Factors

The second most frequent attributable to PTW riders

Primary Accident Contributing Factors

· The third most frequent attributable to PTW riders

Additional Accident Contributing Factors

· Human factors: 72% of all cases

	Frequency	Percent
PTW rider	900	43.7
OV driver	589	28.6
Total	2059	100.0

- · PTW riders: major contributors to crashes
 - 44% of all additional contributing factors
 - L1 = 47 %
 - L3 = 31 %

Content

Presentation of the study

MAIDS highlights

- Human factors
 - Accident population

Alcohol and Drug

- · Alcohol use by the PTW rider: 4% of all cases
 - L1 = 7 % L3 = 3 %

	Accident data	Accident data		ita
	Frequency	Percent	Frequency	Percent
None	853	92.6	902	97.8
Alcohol	36	(3.9)	14	(1.5)
Drug	5	0.5	2	0.2
Alcohol+drug	2	0.2	2	0.2
Unknown	25	2.7	3	0.3
Total	921	100.0	923	100.0

ITF - Motorcycle Workshop - Littlehammer, June 10th & 11*, 2008

PTW Rider Licence

- 5 % without licence (required)!
- 13% with a licence, but for vehicles other than a PTW (equivalence)
 11% licence was not required to operate the vehicle (mopeds)

Other Vehicle Licence

PTW Rider Training

- L1 = 75 % no training
- L3 = 77 % have some pre-license training 13 % no training

	L1vehicles		L3 vehicles		Total	
	Frequency	Percent of L1	Frequenc y	Percen 1 of L3	Frequency	Percer
None	298	74.9	71	13.6	369	40.1
Pre-licence training	35	8.8	404	77.2	439	47.7
Additional training	8	2.0	8	1.5	16	1.7
Other	0.0	0.0	4	0.8	4	0.4
Unknown	57	14.3	36	6.9	93	10.1
Total	398	100.0	523	100.0	921	100.0

Rider Experience on any PTW

Traffic Control Violation

· PTW riders: 24 % of cases when traffic control present

Traffic control violated by PTW rider	Frequency	Percent
No	235	25.6
Yes	73	7.9
Unknown if traffic control was present or if traffic control was violated	17	1.8
Not applicable, no traffic control present	596	64.7
Total	921	100.0

. OV drivers: 41 % of cases when traffic control was present

Content

Presentation of the study

MAIDS highlights

- Human factors
- - Collision dynamics

Collision Avoidance

- No manoeuvre: 27 %
 Braking and swerving 65 % (Directive 2000/56)
 L 1 = 52 %
 L 3 = 70 %

Collision avoidance performed by PTW rider	Frequency	Percent	
No collision avoidance attempted	362 (26.9	
Braking	664	49.3	
Swerve	218	10.2	
Accelerating	17	1.3	
Use of hom, flashing headlamp	18	1.3	
Drag feet, jump from PTW	9	0.7	
Other	32	2.4	
Unknown	26	1.9	
Total	1246	100.0	

Loss of Control

- No loss of control: 68 % of all cases
 Loss of control: 31 %
 L 1 = 16 %
 L 3 = 44 %
- Loss of control mostly related to braking 13 % of all cases (41 % of all cases involving loss of control)
- Single accidents
 - The most frequent: running off the roadway : 23%

ITF - Motorcycle Workshop - Littehammer, June 10th & 11*, 2008

ITF - Molorcycle Workshop - Littehammer, June 10th & 11*, 2008

Reason for failed Collision Avoidance Action

- · Inadequate time available
 - PTW: 32 %OV: 21 %

Reason for falled collision avoidance	PTW rider		OV driver	
	Frequenc y	Percent	Frequenc y	Percent
Decision failure, wrong choice of evasive action	69	7.5	26	3.4
Reaction failure, poor execution of evasive action	41	4.5	8	1.2
In adequate time available to complete avoidance action	297	322	164	21,1
Loss of control in attempting collision avoidance	129	14.0	3	0.4
Other	6	0.7	6	0.8
Not applicable, no OV or no evasive action taken	362	39.3	545	70.1
Unknown	17	1.8	25	3.2
Total	921	100.0	778	100.0

Unusual Travelling Speed

- PTW 18 % L1 = 14 % L3 = 21 %
- · 0V5%

	L1 vehicles		L3 vehicles		Total	
	Frequency	Percent of L1	Frequency	Percent of L3	Frequency	Percent
Speed unusual but no contribution	35	0.0	39	7.5	74	8.1
Speed difference contributed to accident	57	14.2	100	20.8	144 (10.0
No unusual speed or no other traffic (not applicable)	305	76.6	375	71.7	680	73.8
Uranówn	1	0.3	0	0.0	. 1	0.1
Total	398	100.0	523	100.0	921	100.0

PTW Travelling Speed

- Median travelling speed: 49 km/h
 Fatal cases: 70 % with travelling speed >60 km/h
 Speed range: between 0 km/h and 185 km/h

ITF - Motorcycle Workshop - Littehammer, June 10th & 11*, 2008

PTW Impact Speed

- · 75% of PTW crashes occurred below 51 km/h
 - L1 = 95 % below 50 km/h
 L3 = 62 % below 50 km/h
- · 5% of impacts over 99 km/h
- Fatal cases
 32 % between 30 50 km/h
 50 % > 60 km/h

	Frequency	Percent
0 km/h	14	1,5
10 km/h	44	4.8
20 km/h	124	13,4
30 km/h	194	21.1
40 km/h	185	20.1
50 km/h	128	13,9
60 km/h	70	7.6
70 km/h	45	4.9
B0 km/h	40	4.3
90 km/h	25	2.7
100 km/h or higher	50	5.4
Unknown	2	0.2
Total	921	100.0

Content

Presentation of the study

MAIDS highlights

- Human factors
- Injuries

- · 921 accidents
- · 3417 injuries

Relative Injury Severity per Body Region

Helmet Wearing

- L1 = 80 % (Evolving regulation in IT)
- L3 = 99 %

	L1 vehicles		L3 vehicles	L3 vehicles		
	Frequency	Percent of L1	Frequency	Percent of L3	Frequency	Percent
No	69	17.3	4	0.8	73	7.9
Yes	317	79.7	516	98.6	833	90.5
Unknown	12	3.0	3	0.6	15	1.6
Total	398	100.0	523	100.0	921	100.0

Helmet Effect

- Positive 69 % (95 % / helmet worn and contact in region)
- · No effect 4 %

	Frequency	Percent
No helmet present, injury to head occurred	62	6.7
Helmet worn, but no effect on head injury	33	3.6
Yes, coverage present and reduced injury	306	33.2
Yes, coverage present and prevented injury	327	35.5
No injury producing contact in region	152	16.5
Other	4	0.4
Unknown	37	4.1
Total	921	100.0

Discussion / What does MAIDS tell us?

- Human factors are predominant in accident causations
 Perception failures from OV drivers
 Decision and perception failures from PTW riders
 Additional accident contributing factors from PTW riders
- Environmental factors
 Are more worsening than contributing factors (excluding weather cond.)
 An entry to engage with national/local authorities in PTW integration
 Can potentially help riders and drivers (better decision, better perception)
- Vehicles factors
 Marginal accident causation linked to maintenance defect
 Can potentially help drivers to better perceive
 Can potentially help riders (avoidance)

ANNEX 4 MOTORCYCLE CRASHES IN THE UNITED STATES

2006 US Motor-Vehicle Fatal Crashes

- Data from Fatality Analysis Reporting System (FARS)
- Fatality death resulting from a motor-vehicle crash within 30 days of the crash
- Police accident reports
- > 42,000 motor-vehicle related fatalities per year

M.A.I.D.S.	US FARS 2006 Data
70% straight	46% Urban
roadway alignments	50% Rural
52% minor arterials	60% Non-intersection
21% major arterials	24% Intersection-
4.2% motorway	related

	Accident Types
M.A.I.D.S.	US FARS 2006 Data
No dominant configuration	40% OV turning left MC straight, passing, overtaking 26% both V straight
60% collision w/ PC	51% collision w/ other V in transport
Obstacles – roadside barriers infrequent	25% collided w/ fixed object: ~4% guardrail faces, 5% curbs, ~3% trees

Traffic Violations, Licenses		
US FARS 2006 Data		
37% MC speeding		
25% operating w/ invalid licenses 1.4 times more likely than PC drivers to have previous license suspension/revocation		

Contributing Factors

M.A.I.D.S.	US FARS 2006 Data
3.6% Roadway maintenance 3.8% Traffic hazard 7.4% Weather related	3.5% Wet pavement 2% Fallen cargo 1% Police pursuit

Countermeasures

Behavioral (NHTSA)	Roadway (FHWA)
Helmet usage Alcohol Driver training & awareness MC training & licensing	More accommodating infrastructure More forgiving roadside

ANNEX 5 MOTORCYCLE SAFETY IN SWEDEN PRESENTATION BY ORJAN ELLSTROM

Motorcycle safety OECD 10-11 of June Lillehammer

Örjan Ellström Senior advisor Road Safety

2008-06-23

The Road Safety situation for motorcyclists in Sweden

- Development of the use of motorcycles
- New results from indepth-studies
- Future actions

2008-06-23

MC fleet development

Development of fleet milage

0 | 1980

ROAD TRAFFIC INSPECTORATE

2008-06-23

Killed barrier crashes – single accidents

Killed, age - speeding

Number of killed with/without any illegal element

The potential

- Only 13 % of the fatalities were without any illegal elements
- Roads and road equipment are in general designed for cars
- Problem groups of motorcyclists has to be better defined
- Description of problems and actions has to be more specific for each group of motorcyclists

2008-06-23

The end

www.vagtrafikinspektionen.se kontakt@vagtrafikinspektionen.se Växel: 0243-780 00

Fax: 0243-783 30

2008-06-23

ANNEX 6 TRENDS IN MOTORCYCLE CRASHES IN EUROPE PRESENTATION BY SASKIA DE CRAEN

Literature study: Frequent crash scenarios

- About 50% of crashes in non-built up areas
- In about 70% of all crashes the motorcyclist was responsible (64% loss of control)
- About 30% single vehicle crashes
- About 50% collision with a car:
 - in 70% of these collisions the car driver had seen the motorcycle too late or not at all

Saskia de Craen 10 – 11 June 2008

www.swov.nl / www.erso.eu

Motorcycle safety in the EU

ANNEX 7 MOTORCYCLING SAFETY POLICIES: THE MOTORCYCLIST'S VIEWS PRESENTATION BY ALINE DELHAYE

Joint Transport Research Centre

Session 3: Motorcycling safety policies

The motorcyclists' views

Aline Delhaye FEMA General Secretary On behalf of motorcyclists worldwide

- · Motorcyclists are vulnerable and have a high risk of injury (this is also true for walking or cycling).
- ⊃No road safety initiative whether from Governments or riders themselves - can ever make motorcycling risk-free.

Most riders are safety conscious

- · Most riders are fully aware of the fact that they are vulnerable road
- claimed that motorcyclists are a "careless" group of road users!

- · motorcycling sometimes attracts "high risk takers"
- give motorcycling a bad public reputation!
- doubtful whether any road safety initiative will change the attitude and behaviour of these
- are regular motorcyclists should not have to pay the consequences of these few extremists

- · Road safety targets should reflect casualty rates, not only casualty numbers;
- · Police accident reporting and discrepencies comparing data;
- · Need to monitor the effects of various road safety initiatives;
- Statistical information is generally a problem when talking about motorcycle safety

Motorcycle accident research:

International Transport Forum

· Motorcycle casualties are often the focus of research, with many reports highlighting the perceived risk-taking of motorcyclists and the dangerousness of motorcycles.

· Lack of understanding of motorcycles and motorcyclists: the majority of researchers do not ride motorcycles and do not understand the social issues surrounding two wheeled transport

√ good initial rider training

reduction:

International Transport Forum

- ✓ motorcycle awareness campaigns
- ✓ predictable road infrastructure

Improving motorcycle safety: key safety aspects

Riders Associations around the world have been working at improving motorcycle safety for decades.

Their thorough knowledge of motorcycling and motorcyclists have provide them with a true expertise not to be overlooked.

Human factors

Human factors

Licensing/Education/Training Crash Avoidance Skills Braking Hazard Awareness **Panic Management**

Licensing/Education/Training Crash Avoidance Skills

Braking

Human factors

Licensing/Education/Training Crash Avoidance Skills Braking Hazard Awareness Panic Management Physical/Alcohol/Substance impairment

Human factors

Licensing/Education/Training Crash Avoidance Skills Braking **Hazard Awareness**

Human factors

International Transport Forum

Licensing/Education/Training Crash Avoidance Skills Braking Hazard Awareness Panic Management Physical/Alcohol/Substance impairment Personal Protective Equipment

Some positive examples

· Europe: Initial Rider Training

Some positive examples

- · Norway: In-control project
 - 'In-control' booklet 2002 (riding techniques, machine control)
 - 'Good thinking' booklet (effective traffic strategies)

Joint Transport Research Centre

United Kingdom:

International Transport Forum

The SHARP project

- New helmet safety scheme for motorcyclists
- Rating reflects the performance of each helmet model following a series of advanced tests
- Information made available to the public as a simple five star rating

Some positive examples

- · France: Powered two wheelers charters
 - FFMC/Nantes
 - FFMC/Paris
 - Provides guidelines for a proper road sharing

Some positive examples

- · Australia: « Positioned for Safety »
 - Developed by rider organisations, with input from a professional independent researcher
 - Funded by the New South Wales Motor Accidents Authority

Some positive examples

· Australia: « Positioned for Safety »

Some positive examples

- · United States: the SAFETEA-LU Bill
 - Specific funding provided to states to be used by NGOs on rider education and awareness campaigns only
 - \$6 million per year for 3 years, then \$7 million for the forth year. Total: \$25 million
 - Creation of the Federal Highway Administration Motorcycle Advisory Council (FHWA-MAC)

Some negative examples

- · Switzerland: Via Secura Plan
 - Pack of respressive measures including additional restrictions, bans and controls;

- ignores motorcyclists' real safety needs;
- no consultation of the motorcycle sector;
- use of inaccurate data;

Some positive examples

- Canada: Insurance discounts for novice & advanced training
 - reduced insurance premiums if the rider has taken basic training
 - financial benefit to take training
 - powerful incentive to the rider to engage in training.

Some negative examples

- France: Negative awareness campaigns
 - Communication on motorcycle users depicting road delinquan
 - Counter productive
 - Does not help mutual understanding

« the best protection for a motorcylist is to respect the driving rules!»

Some negative examples

- Europe: Driving Licence Directives
 - Limiting access without safety reasons
 - No monitoring of the effects of the previous directives
 - Decision taken without taking the motorcycle community's advices into account

Some negative examples

International Transport Forum

- Australia: « Eyes on the Road Ahead"
 - in 2004, Australian Motorcycle Safety Strategy
 - Single measure: re-introduction of the front number plate
 - MC Safety Strategy = front number plate!

Some negative examples

- · Canada: Subprimes for sport motorcycles
 - over representation of sport motorcycles accidents in Quebec's statistics
 - new subprime adopted for this type of bikes
 - Hurt/MAIDS reports highlighted problems with modified bikes, not sport bikes
 - ☼ To avoid subprime, tampering of more and more non-sport bikes, the most dangerous ones

Motorcycle Safety policies: Conclusions

- · Based on facts or prejudices?
- · Accident prevention or Injury reduction?
- · Positively driven or « bikeism »?
- Taking into account motorcycling characteristics (in consultation with motorcyclists) or derived from car safety policies?
- Hidden ban or real consideration?

Motorcycle Safety Policies

- Based on reliable statistics and sound research conclusions
- ✓ Including monitoring of policy effects
- ✓ Involving all stakeholders
- ✓ Focus on an integral solution of the problem
- √ Respecting of motorcycling characteristics
- √ Fair compared to other means of transport

Motorcycle safety strategies

ANNEX 8 THE UK MOTORCYCLING STRATEGY PRESENTATION BY ANDREW COLSKI

Advisory Group on Motorcycling

Department for **Transport**

- Established 1999
- Brought together key stakeholders Users, industry, police, central and local government
- Considered full range of issues affecting motorcycling, not just safety
- Reported 2004

The Government's Motorcycling Strategy Published 22nd February 2005 Government's response to AGM report Mainstreaming motorcycling Continuing to work together on implementation, through National Motorcycle Council

Traffic Management and Infrastructure

Transport

- The Institute of Highway Incorporated Engineers (IHIE) guidelines on the provision for motorcyclists on the highway
- Highways Agency including motorcycles in its Safety Action Plan for trunk roads & motorways
- HA implementing motorcycle friendly crash barriers
- New DfT guidance on allowing motorcycles in bus lanes

Technical and Engineering

Transport

- SHARP New scheme for improved consumer information on motorcycle helmets
- Diesel spills information for diesel vehicle users and petrol retailers as well as motorcyclists
- User survey on brakes, tyres, mirrors, to inform policy development

Training and Testing

Transport

- Driving Standards Agency's Post-Test Trainer Registration Scheme – voluntary from Feb 07
- Insurance discounts linked to post test training – Enhanced Rider Scheme
- 3rd EU Driving Licence Directive consulting with industry and users on implementation by 2013

Road Safety and Publicity

Transport

- DfT's 'Think!' road safety campaign sponsors British Super Bikes championships since 2004 – The Think Motorcycle Academy
- TV advert aimed at car drivers warns them to 'take longer to look for bikes'
- Research programme to increase understanding of motorcycle accidents and how to address them, including fatigue, training and drivers' attitudes to motorcyclists.

New Action Plan and Strategy

Department for **Transport**

- The NMC has agreed a new action plan to update what was published three years ago.
- Refreshes actions so they are better focussed on current priorities
- Next step will be to update the strategy itself by 2010

Further details

Transport

- http://www.dft.gov.uk/pgr/roads/vehicles/motorcycling/thegovernmentsmotorcyclingst4550
- http://www.thinkroadsafety.gov.uk/campaigns/motorcycles/motorcycles.htm