LOW CARBON ROAD OPERATION
– ELECTRIC ROAD SYSTEM (ERS)

Bernard Jacob
Scientific Division, IFSTTAR
Technical Committee B4, PIARC
Challenges or the ERS

- To ensure a **continuous energy supply** on the **equipped road network**
- **Reliability** and **efficiency** of the system
- **Resilience** to the weather, traffic and **infrastructure** conditions
- **Safety** of other divers/users
- Affordable transformation of **vehicles**, electricity/fuel in parallel
- **Infrastructure electrification**: technical issues and **business model**
- **System operation**
- IRU recommends **40-45%** of long haul road transport **on ERS by 2050**
ERS Technologies

- Catenary solution
- Ground conductive solution
- Ground inductive solution
Catenary (overhead) supply

To be presented by P. Akerman
Ground-level feeding: from rail to road

- Segmented ground feeding system
- APS in operation since 2003 in Bordeaux
 - In 10 cities (in operation or under construction)
 - More than 30 000 000 km run in APS
 - Total: 334 tramways and 141 km of track
 - APS provides same performances than OCS
 - Intrinsic safety and compatible with mixed traffic (crossroads)
Ground-level feeding

- APS for road: proof of concept (Slide-In project, SE)
- Demonstrator (350 m) built on Volvo test track
- Proof of concept validated
- Improved solution answering road needs under development

<table>
<thead>
<tr>
<th>Current collection test</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>125kWatts 180Amps 690VDC transfer</td>
<td>✓</td>
</tr>
<tr>
<td>Truck speed more than 80km/h</td>
<td>✓</td>
</tr>
<tr>
<td>20km of continuous power transfer</td>
<td>✓</td>
</tr>
<tr>
<td>Rainy conditions</td>
<td>✓</td>
</tr>
<tr>
<td>Short circuits tests</td>
<td>✓</td>
</tr>
<tr>
<td>Track adherence tests</td>
<td>✓</td>
</tr>
</tbody>
</table>
Conditions and barriers

• At least 20-30 km transport distance
• About 60% of the distance needs to be on electric road
• The average daily number of electric transports should be 3 times the length of the mean transport distance in km
• At least 20% (preferable 50%) of the annual distance driven by each electric truck should be on the electric road
• Preferably several operators running on the same electric road
• Elements of shuttle like operation
• High/long-term investments + cost share → Business model!
• Some safety issues to be mitigated + standardization
Benefit of Electric Road System (ERS)

- reduces energy use
- reduces CO2 emissions
- utilizes existing infrastructure
- creates new field of knowledge and industrial branch
- is a field for cooperating between the political, administrative and industrial entities
Évaluation économique de l’autoroute électrique sur 20 ans

Deux cas de figure

Rentabilité intrinsèque

- Section de 210 km
- Trafic de ~ 14 000 PL / jour

<table>
<thead>
<tr>
<th>Coûts</th>
<th>Recettes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infra. 320 Mt€</td>
<td>Gains SPV* 320 Mt€</td>
</tr>
</tbody>
</table>

Cas avec soutien public

- 3 200 km d’autoroutes, 1/3 du réseau
- Trafic moyen de ~ 8 100 PL / jour

<table>
<thead>
<tr>
<th>Coûts</th>
<th>Recettes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infra. 5 Md€</td>
<td>Gains Transporteurs 1 Md€</td>
</tr>
<tr>
<td>Gains SPV* 2 Md€</td>
<td></td>
</tr>
</tbody>
</table>

Contributions

- **5 MtCO₂ évitées**
- **850 Millions d’€ d’économies sur la balance commerciale**

- **30 MtCO₂ évitées**
- **5 Md€ d’économies sur la balance commerciale**

SPV : Special-Purpose Vehicle, ou société de projet. Il s’agit de la société dédiée qui construira et exploitera les infrastructures de distribution d’électricité le long de l’autoroute.
ERS Technologies and Projects

Project Victoria
E-Way Corridor

29/06/2018
Decarbonizing Road Freight - Bernard Jacob
Projects

Ray Corridor:
- Paris-Le Havre (A13)
- Feasibility study
- Multi-technology
- Techno-economical
- ADEME: “Road of the future”
- OIE, IFSTTAR, SANEF, SPIE, AFNOR, Accenture…
Thank you very much for your attention!

bernard.jacob@ifsttar.fr