

Lower Carbon Technologies

International Transport Forum Expert Workshop June 28-29, 2018

Dr. Michael Traver Commercial Transport Fuels Research

where Aramco Locations and Connections

3 R&D centers connected with relevant stakeholders

how Aramco's Fuel Technology Activities

how Fuel Technology Research Focus

Our fuels technology program is aimed at improving the efficiency of current and future engines, and reducing the overall environmental impact, cost and complexity of engine systems.

key elements:

4

- Holistic Approach to Innovation
- Beyond Well-to-Wheels
- Great Engineering Practices
- Technology Integration and Demonstration

oramco

why Future Demand

Global economic growth drives increase in commercial demand •

ExxonMobil 2017 Outlook for Energy: A View to 2040

Global transportation energy mix evolves

Decarbonizing the commercial sector presents a large challenge, but there are opportunities

Heavy Duty Gasoline Compression Ignition

HD GCI | Test Engine

• Modern heavy duty highway diesel engine that can be installed in all major truck brands – non-road variant also available

Displacement Volume	14.9 L
Number of Cylinders	6
Bore	137 mm
Stroke	169 mm
Compression Ratio	18.9, variants at 17.3 & 15.7
Diesel Fuel System	2500 bar common-rail
Air System	single-stage VGT high pressure cooled EGR loop charge air cooler
Engine Ratings	450 hp @ 1800 rpm 1750 lb-ft @ 1000 rpm

→ Aramco purchased a 2013MY Cummins ISX 15L 450hp engine as a research test bed

HD GCI Fuel Characteristics

- Opportunities exist in engine-fuel optimization for heavy-duty engines
- Gasoline Range Fuels offer beneficial H:C ratio

		Test Fuels				
		ULSD	RON60 Gasoline	RON70 Gasoline	RON80 Gasoline	RON91 Gasoline
IBP	°C	158	41	40	37	34
T10	°C	209	71	62	57	51
T50	°C	254	98	91	88	83
Т90	°C	305	124	127	133	151
FBP	°C	336	141	169	184	198
Density at 15.56 °C	g/mL	0.853	0.714	0.717	0.724	0.733
Kinematic viscosity	cSt	2.42	0.59	0.57	0.56	0.55
Aromatics	vol%	29.0	9.1	13.7	19.7	25.7
Olefins	vol%	1.5	0.4	3.0	5.6	10.4
Saturates	vol%	69.5	90.5	83.4	74.7	63.9
Sulfur	ppm	5.9	19.3	8.2	6.2	3.0
H/C ratio	-	1.822	2.124	2.058	1.981	1.854
Cetane Number (CN)		41.2	34.1	29.8	25.9	20.4
RON	-	-	56.0	69.4	80.0	91.4
MON	-	-	55.1	67	74.9	84.6
AKI	-	-	55.6	68.2	77.4	88.0
Lower heating value	MJ/k g	42.76	44.112	43.623	43.58	43.42

 \rightarrow Aramco is exploring fuel chemistry and combustion as a means to lower CO₂ emissions

HD GCI "Drop-in Fuel" Mixing-Controlled Combustion

→ Lower engine-out emissions and EPA2010 compliant with light-end straight-run gasoline

HD GCI Efficiency Improvement Potential – Aramco Design

4% better fuel consumption calculated with optimized combustion system

HD GCI GCI Hardware Performance: SET 12 Modes

SET 12-mode composite results	BTE [%]	BSFC [g/kWh]	BSFC Delta [%, vs. RON60 stock]	NOx [g/kWh]	Soot [g/kWh]	CO₂ [g/kWh]	CO ₂ Delta [% vs. ULSD]
ULSD 18.9CR	42.6	197.7	-	4.6	0.037	627.4	
RON60 18.9CR	42.1	194.1	-	4.6	0.013	603.4	3.8
RON60 BowIC 8Holes TNA1.5 SwR2.0	42.5	192.3	0.9	4.5	0.046	597.9	4.7
RON60 BowIC 8Holes TNA1.0 SwR1.0	42.5	192.1	1.0	4.5	0.029	597.0	4.8
RON60 BowlE 9Holes TNA1.3 SwR1.0	42.8	190.2	1.6	4.5	0.084	591.7	5.7

- Up to 1.6% BSFC improvement was attained through lower heat transfer loss and faster combustion
- Higher soot emissions need to be addressed in future design refinement activity
- CFD model correlates reasonably well on efficiency, but soot prediction is lacking.
 - \circ Plume-to-plume interactions \rightarrow full geometry simulations to understand interaction
 - \circ Soot formation vs. soot oxidation \rightarrow Evaluation and calibration of different soot model options

 \rightarrow Further CO₂ reduction possible with optimized combustion design

HD GCI Mixing-Controlled Combustion with Market Gasoline

- Split injection strategy
- E0 RON 93 gasoline
- Production hardware
- Production AT configuration

	hFTP RON93
EO NOx	3.118 g/kWh
TP NOx	0.177 g/kWh
Conv Eff.	94.5%

Demonstrated EPA2010 NOx emissions compliance on market gasoline over hot FTP

Low Carbon Technology Demonstrator

Low Carbon Tech | Motivation

- Global commercial vehicle contribution to GHG emissions expected to grow larger in future while regulations are tightening
- Significant research ongoing to improve the efficiency of the engine, driveline and vehicle
- Impact of each technology remains in the low single digit percentage improvement range
 - Engine efficiency $\sim 5\%$
 - Friction ~1-3%
 - Waste Heat Recovery ~2-3%

EPA/NHTSA UPDATE ON PHASE II GHG AND FUEL EFFICIENCY RULES FOR MEDIUM AND HEAVY DUTY VEHICLES, 2015.

CO₂ Capture Technology offers high relative GHG reduction potential: 40-50%

Carbon capture technology has the potential to significantly reduce mobile CO₂ emissions

Low Carbon Tech | Project Milestones

Low Carbon Tech | Carbon Capture System Overview

System harvests available energy from exhaust and coolant to drive separation process

Low Carbon Tech | Carbon Capture Volume

- For 40% CO2 capture, volume of CO₂ = 1.12 gal/gal fuel at 298K & 110 bar
- Assuming a total fuel capacity of 200 gallons:
 - Volume of CO2: 225 gallons or 850 liters
 - Weight of CO2: 1490 lb or 675 kg
 - Tank sizes: 9.1-18.4" in diameter and up to 120" long
 - Three 75 gals-CO₂ tanks required (pictured)

Tank volume is high, but not infeasible

Low Carbon Tech Vehicle Technologies

Tech Demonstrator Combines Multiple Technologies to Achieve Low CO₂ Footprint

Low Carbon Tech | Vehicle Technologies

Technology	Fuel Savings	CO ₂ Reduction	Other Benefits	Interactions with other Technologies
Gasoline Compression Ignition: • No hardware change needed	0%	3% - 7%	Lower Soot /Similar NOx	Low CO2 Concentration: 3-4%
Waste Heat Recovery: • Turbo-compounding	2%	2%	Lowers exhaust temperature	Reduced exhaust cooler size
Low Rolling Resistance: • Single-wide tires • Liftable 6x2 Axle	5% 3%	5% 3%		
 Lubricants: Reduced friction in Engine & Powertrain 	2%	2%		
CO ₂ Capture	-2%	40%		Energy needed to compress CO ₂
Total:	10%	55-59%		

Technologies not included: Aerodynamics, APU, Down-speeding, Automated manual transmission

 \rightarrow Overall system stack-up projects to >50% CO₂ reduction compared to baseline vehicle.

