

Marine biofuels -potentials and compatibility

Claus Felby, University of Copenhagen

IEA Bioenergy

IEA Bioenergy

- The aim is to improve cooperation and information exchange between countries with national programmes in bioenergy research, development and deployment.
- The IEA Task 39 is dedicated to sustainable development and deployment of transportation biofuels.
- Participants from 15 countries representing academia, government and industry
- Focus inculde: Technology development & assesment, and sustainability evaluation. Multidisciplinary approach

Biofuels

-fuel types, global potential

- Biofuels are made from biomass, the current largest renewable energy source
- Biofuels can be directly compatible with marine diesel engines. Very low in sulphur, potentially low in GHG
- Biofuels are prepared from whole biomass or its main components:
 - Sugar, Lignin & Oil
- Four types of biofuels:
 - Plant oils (Biodiesel)
 - Alcohols (Bioethanol)
 - Biomethane
 - Synfuels (Fischer-Tropsch)
- Potential for development of dedicated marine biofuels

Biofuels -sustainability

- Biofuels comes in many sizes and feedstocks.
- Sustainability of biofuels are complex.
 Certification ongoing
- 1st generation (1G) biofuels are based on crops and 2nd generation (2G) biofuels are based on waste and residues
- 1G biodiesel made from plant oils may not be sustainable and are limited in potenital.
- 2G biodiesel and 2G bioethanol are sustainable, up to 90% CO₂ reduction
- Biomethane, high sustainability, but bevare of methane leaks
- Synfuels are made from waste and residues in a thermal process, but are still far from commercial scale
- Feedstock is the main sustainability parameter

New engine technologies -multifuel engines

- 2-stroke diesel engines can run on a wide range fuels with very high efficiency
- LGI multifuel engines can run both heavy oil, LNG, alcohol (methanol and ethanol) in a diesel cycle
- Only renewable alcohol available in commercial quantities is bioethanol

Low sulphur, low carbon -technical opportunities

Energy carrier	Combustion engine	Engine/fuel tank retrofitting	Long haul	Potential GHG reduction	Technology readiness
Ammonia	Yes	Yes (major)	Yes	Large	Medium term
Hydrogen	Yes	Yes (major)	Yes/No	Large	Medium term
Batteries	No	Yes (major)	No	Large	Short term
Fuel cells	No	Yes (major)	Yes	Large	Long term
Sails (wind)	Hybrid	No	Yes	Partial	Short term
Nuclear	No	Yes (major)	Yes	Large	Short term
LNG	Yes	Yes (major)	Yes	None ->increase	Short term
ULSD	Yes	No	Yes	None ->increase	Short term
Scrubbers	Yes	No	Yes	None	Short term
Biofuels plant oils	Yes	No	Yes	Large	Short term
Biofuels methane	Yes	Yes (major)	Yes	Partial	Short term
Biofuels alcohols	Yes	Yes	Yes	Large	Short term
Electrofuels	Yes	No	Large	Partial	Long term
Higher mileage	Yes	No	Yes	Partial	Short term

Large GHG reduction = more than 50%Technology readiness; short term 0-5 years, medium term 5-15 years, long term 15-50 years

Fuel specifications and price

Marine fuels vs. biodiesel and bioethanol

	HFO Heavy fuel oil	MDO Marine diesel oil	MGO Marine gas oil	ULSD	FAME Biodiesel	HVO Hydrotreated vegetable oil	Ethanol
Kinematic viscosity (mm²/s)	<380	2 - 11	2 – 6	1.9-4.1	4.2 - 4.5	2.5 - 3.5	1.5
Heating value (MJ/kg)	40.5 -43	42 - 48	44 -45.3	42	37-40	44 – 47	27
Density at 15°C	<991	<900	<890	875	880 - 920	770 – 790	790
Flash point (°C)	>60	>60	>60	>52	110 - 195	>61	17
Pour point (°C)	>30	0 - 6	-6 - 0	-12	-4 - 6	-525	-114
Sulfur (%)	<3.5	0.3-2.0	0.1-1.5	0.00015	Close to 0	Close to 0	Close to 0
Price \$/mt \$/GJ 08 Oct 2018	540 13	757 17,2	821 18,5	690 16,4	1130 29	990 21,5	469 17,3

- Fuels regulated by ISO 8217:2017
- Biofuels initially substitutes MDO and MGO
- HVO is also a feedstock for bio jetfuels
- Feedstock competition between marine and aviation fuels

What are the biofuel potentials?

Biofuel potentials based on agricultural production vs. fuel consumption. Note distinction between 1st and 2nd generation biofuels. For 2G bioethanol a 50% use of residues is assumed. 2G numbers based on global agricultural residue potentials, see Bentsen et al. 2014 Progress in Energy and Combustion Science 40 59-73.

Marine biofuels are keep-it-simple fuels

- Renewable fuels has a higher cost
- Biofuels for marine engines can be simpler (dum fuels) compared to other biofuels
- Marine biofuels open for more efficient biomass use i.e. higher sustainability and lower cost
- Some fuels are produced commercial scale, established industry.
- Scaling of marine fuels is the big issue
- Speed of transition; years to decades
- Partnerships are needed (chicken and egg situation)

