

Reducing Transport Greenhouse Gas Emissions: How Much, How Fast and at What Cost?

Mr. Philippe Crist, Joint Research Centre of the International Transport Forum and the Organisation for Economic Co-operation and Development

UNEP – Geneva, February 11, 2008

The International Transport Forum

- A global platform for transport, logistics, mobility
- A meeting place for the transport sector at the highest level
- A forum run by governments, open to business, research and civil society
- 51 Countries

Outline

"Mind the Gap": GHG Trends in the Transport Sector

Transport Policy Implications and Priorities

Emissions

Kyoto Gases: Carbon Dioxide, Methane, Nitrous Oxide, H-gases... but also NOx, SOx, Black soot, Water vapour, other atmospheric-reactive compounds and effects (contrails)

Atmospheric Concentrations:

Depends on interaction with other emissions, strength of sinks (extraction from the atmosphere), persistence in atmosphere

Radiative Forcing

Actual impact on atmospheric temperatures, not constant factor (depends on atmospheric concentrations), can be pos., neg. or both depending on point of emission/concentration

Climate Change

Changes in: average atmospheric temperatures, amount and pattern of precipitation, wind strength and patterns, soil moisture, frequency and strength of extreme weather, sea level.

Impacts of Climate Change

Agricult. and Forestry (yields and spatial shifts), ecosystems (spatial shifts, loss of key ecosystems and species), energy prod. and cons., water distribution, social effects, etc....

Damages/Benefits

Welfare losses, welfare gains (monetary units - e.g. GDP), other welfare metrics (HDI,GPI, etc)

Linking Emissions to Damages

Increasing uncertainty

Increasing relevance to policy

2

3

6

CO2 vs. Total Radiative Forcing from Aviation

Present

Global Anthropogenic GHG Emissions 1970-2004

Present

Transport's Share of CO2 emissions from fuel combustion

(2005 IEA data, including international aviation and maritime)

Recent trends

Transport Sector CO2 Emissions by Region: 1990-2005

(excluding international aviation and shipping)

EU-15

New EU (EU27-EU15)

OECD Asia

Other ITF

Top 10 non ITF

North America

CO2 Emissions: Comparing China and USA 1990-2005

Future trends

World Motorization: WBCSD Projections

Future trends

source: Corbett, 2007

Shipboard power trends implicate growth in energy demand

New Developments

Decrease in Transport CO2 Emissions: 2002-2005

Indexed to 1990, IEA data, France, Germany and Japan

Outline

"Mind the Gap": Trends in the Transport Sector

Which Policies at What Cost?

- Our review of Transport GHG Policies
- Decision framework: Cost Effectiveness
- Evidence of Transport GHG Marginal Abatement Costs
- Focus on Fuel Efficiency and Biofuels

International Transport Forum What is being done? ITF Transport Sector Emissions:

ÓECC

Potential Impact of Current Policies

Principles and Guidance

Cost-effectiveness matters

- Cost-effectiveness fundamental determinant of which abatement policies to adopt
- 2nd best argument transport should mitigate more because limited de-localisation effects
- Transport reported to have high marginal abatement costs, evidence that this is not so much the case

– More rigourous abatement cost analysis needed

- High cost measures have attracted political support: Hydrogen, Biofuels, Modal shift, Hybrids
- Despite low effectiveness or robust quantification of GHG reduction
- Effective measures have weak political support

Fuel Efficiency: Potential

- Tyres, cruise control, air con effective, lubricants: combined these could save up 5-10% of fuel.
- Diesels: lower potential for improvement
- Reducing vehicle weight important: evidence indicates this can be done without compromising safety
- More ambitious measures might deliver up to a factor 2 improvement by 2035 – but this will be challenging and a crucial question remains: how will people use their fuel savings?

Designing support for Biofuels

- Should not subsidise high CO2 abatement (\$520-1340/ton CO₂) when lower cost alternatives available.
- Must account for soil released CO₂ and Nitrogen
- Volumetric targets inappropriate

Likely to favour worst performing, lowest cost production

- Transport fuel carbon content targets better
- Certification for biofuels production
- Fuel carbon taxes, including for biofuels, would be more costeffective than subsidies or targets

Outline

"Mind the Gap": Trends in the Transport Sector

Which Policies at What Cost?

Transport Policy Implications and Priorities

Policy package (1/2)

- Integrated packages of measures needed
 - Vehicles, fuels, demand management, modal shift : fiscal and regulatory
 - mix depends on context
- Pricing important: London and Stockholm = -20% CO2, German heavy goods vehicle charge.
- Public Transport, Integrated Land Use Planning, Strategic Infrastructure Investment all can have large co-benefits... and can deliver other benefits even if climate impact difficult to quantify.
- ... but sectors deliver GHG reductions on different time scales

Long-term: UK

UK Modeled CO2 Emission Reductions by Sector

Scenario Showing Least Cost Route to 60% Reduction by 2050

Short-term: Japan Transport CO2 Reduction Strategy 2002-2010, Japan

Policy package (2/2)

- Vehicle efficiency measures deliver the most quantifiable cuts
- Off-cycle components and eco-driving are most cost-effective
 - Significant, immediate savings should be core measures
 - Give more attention to efficiency, away from only fuels & modal shift co-benefits approach (currently 1/3 of all national policies reported)

Some Priorities for Road Transport

- Certification of Biofuels, volume targets to become quality targets.
- Differentiate vehicle taxes by CO₂
- New low cost efficiency measures Identify responsibility for implementation
- Develop off-test vehicle component standards / incentives
- Include CO2 in transport appraisal
- Increase understanding of transport abatement costs
- Ultimately, we need a price on Carbon.

Some priorities for maritime/aviation

Thank You For more information:

www.internationaltransportforum.org www.cemt.org