#### CBA and sustainable development A French point of view

#### Emile Quinet PSE, Ecole des ponts-ParisTech



École d Pari

## Outline

#### onisTech

- The framework
- Long term issues
- Uncertainty
- Stock effects
  - Carbon price
  - Biodiversity
  - Agricultural land value

#### Flow effects

- Pollution
- Upstream-Downstream effects
- Noise
- Overview of the changes in the distribution of benefits

PARIS-EST

## The framework

anisTech

- A recent working party revised the methodology for CBA of public investments
  - Part of a regular updating, which takes place every 5 years
  - A collective work
- The report addressed many issues
  - Updating unit values
  - Redistributive concerns
  - Spatial effects
  - ...
  - In terms of sustainable development, the recommandations were marked by several closely related concerns going at the top of the agenda:
    - Long term issues
    - Uncertainty
    - Climate change and Carbon price
    - Other stock effects (biodiversity, value of agricultural land)
    - And also of course, flow effects (air pollution, ....)

# Long term issues: The need for a long term strategy

- Infrastructure investments have a long life-time (often several hundred years)
- CBA is carried out at the margin of a growth trajectory
- Due to the ongoing transitions, these growth trajectories cannot be extrapolated from the present trends
  - They must take into account
    - macro-economy
    - Other related sectors: spatial organisation, energy,
  - They need to be extended to longer time span than the usual #20 to 30 years
  - They need to be standardized in order to make CBA comparable from one project to another
  - Besides, the horizon is postponed to 2140



## Uncertainty

 The problem: to take into account the random walks of surpluses drawn from an investment and GDP

nieTech

- Around fixed trends, the higher the future GDP, the lower the utility of future surpluses expressed in Euro
- The expected utility of a future surplus depends on the correlation between this surplus and GDP
  - When correlation is negative the investment plays the rôle of an insurance and is more valuable then when correlation is positive
- The analysis comes to a result similar to what is commonly used in finance:

## Uncertainty

• The discount rate to be used for a project is specific to each project:

$$r = r_f + \varphi \beta$$

#### • where

nieTech

- r is the risk-factored discount rate specific to the project,
- r<sub>f</sub> is the risk-free rate, set by the report at 2,5%
- $\phi$  is the general risk premium, set by the report at 2%
- $-\beta$  is specific to each project and measures the correlation between the surpluses and the GDP

PARIS-EST

#### Uncertainty

 The coefficients β lie between 1,00 (for urban public transport) and 1,50 (for intercity long distance transport)

PanieTech

#### Stock effects : the price of carbon

#### • The 2009 report on carbon price:

nicTech

- The objective was to estimate prices implied by the international agreements, not to estimate the cost of damages: cost-efficiency, not cost-benefit
- The recommendations were based on:
  - A review of existing recommended estimates in similar countries
  - The teachings of the permit markets
  - The results of three models

#### Stock effects : the price of carbon

 For year 2010: the value used in the previous recommendations: 32 Euro per ton of carbon

DanieTech

ραρις-έςτ

- For year 2030: 100 euro per ton of carbon (coming from the results of the modelling exercise)
- After year 2030: the Hotelling rule: 4% per year



#### Stock effects : the price of carbon

#### • The updating:

- To keep the 2010 and 2030 values, for which an agreement has been difficult to reach
- After 2030, to adapt the growth to the new discounting system
  - Which value of the correlation between carbon price and GDP?
    - Few estimates, some are negative, other positive
    - The choice was based on a study by Gollier (2013)
    - The result: the  $\beta$  of carbon price is set to 1,00
    - Then the price of carbon grows at a 4,5% rate



nicTech

## Stock effects : biodiversity

• The diversity of biodiversity

nieTech

- It was deemed not possible yet to recommend a comprehensive set of mandatory values
- Biodiversity is taken into account through regulations (« no net loss »)
- The need to develop estimates of the services provided by bio diversity

# Stock effects: value of agricultural land

- We have a good knowledge of market prices
- But they do not reflect the economic value:
  - Many subsidies
  - Pollution externalities
  - Biodiversity effects
  - Long term considerations : food security, independance

### Flow effects: air pollution

nieTech

- A raise in the economic costs of air pollution, due to the raise in the Value of life : from around 2 Million Euro to 3 Million Euro
- Values transferred from the Impact study, taking into account the French specificities (type of vehicles, population density, ...)

### Flow effects : upstream/Downstream effects

 Introduced using the Impact study, transferred to the French case



PanieTech

### Flow effects : noise

- The problem: at the stage where CBA takes place, noise cannot be properly assessed
  - The mandatory values are given per veh\*km
  - They are highly uncertain

anieTech

## Induced changes

- An increase in the proportion of amenities
- Example of the « Grand Paris » study
- The main change should come from proper long term strategies (reference scenarios)

PanieTech

#### **Advantages and costs**



2136 2138 2140

201 RA I EL

Société du Grand Paris



#### **Cost Benefit Analysis**

#### Former procedure

| Avantagesd                              | S1 (Md€2010) |      |      |
|-----------------------------------------|--------------|------|------|
| Avantagood                              | 2025         | 2035 | NPV  |
| Time savings                            | 1,0          | 1,9  | 27,6 |
| Reliability                             | 0,2          | 0,2  | 3,4  |
| Comfort                                 | 0,1          | 0,2  | 2,2  |
| Environmental and urban effects         | 0,5          | 0,7  | 10,4 |
| Spatial effects: changes in<br>location | 0,0          | 0,5  | 5,5  |
| Spatial effects: changes in<br>density  | 0,0          | 0,6  | 6,3  |
| Employment effects                      | 0,0          | 1,1  | 12,2 |
| Total Advantages                        | 1,7          | 5,1  | 67,6 |

| Advantages                              | S1 (Md€2010) |      |      |
|-----------------------------------------|--------------|------|------|
| Auvantages                              | 2025         | 2035 | NPV  |
| Time savings                            | 0,9          | 1,8  | 21,8 |
| Reliability                             | 0,2          | 0,2  | 3,1  |
| Comfort                                 | 0,0          | 0,1  | 0,7  |
| Environmental and urban<br>effects      | 0,4          | 0,6  | 12,6 |
| Spatial effects: changes in<br>location | 0,0          | 0,5  | 4,6  |
| Spatial effects: changes in<br>density  | 0,0          | 0,6  | 5,4  |
| Employment effects                      | 0,0          | 1,1  | 10,4 |
| Total Advantages                        | 1,5          | 4,8  | 58,6 |



| UNIVERSITÉ                    |                       | Urbar |
|-------------------------------|-----------------------|-------|
| - PAIN5-EST<br>* Valeur actua | alisée à l'année 2010 | Total |

| NPV in Md€ 2010  | De Robien | Quinet |
|------------------|-----------|--------|
| Pollution        | 0.3       | -0.9   |
| Safety           | 0.5       | 1.0    |
| Carbon emissions | 2.9       | 6.5    |
| Noise            | -0.0      | 0.2    |
| Urban effects    | 6.7       | 5.7    |
| Total            | 10.4      | 12.6   |

