Reforming private and public urban transport pricing

Stef Proost Economics – KULeuven ITF Roundtable – Auckland – Nov 2017

Road congestion in Paris

Addressed with cheap public transport which gave us ...

Metro in Paris at peak hours

Main message

- In many metropolitan areas and in peak periods, PT has a larger market share than private road transport and its pricing is suboptimal
- Public Transport has an important role to play in urban areas, but
 - Cheap PT cannot substitute road pricing
 - Road pricing <u>AND</u> reform of PT pricing are necessary
- Difficult political message, decentralisation of pricing to city level may help

Outline

- First principles of pricing of road and PT
- Some numerical evidence
 - Stockholm
 - Paris
- Getting political support for a pricing reform
- Conclusions

First principles road pricing

Road toll $_t$ = marginal external cost of a car

- = marginal external congestion cost + other external costs
- $= \sum_{\text{all road users}} \text{cost of additional delay due to extra vehicle}$
- + environmental and accident costs generated by this vehicle

First principles PT pricing + frequency

- bus fare = marginal cost of an additional bus user
- = marginal external cost of an additional bus user
- = additional time cost for other users due to mounting and alighting of an extra passenger
- + additional crowding discomfort costs of an additional bus user.

OPTIMAL FREQUENCY

Benefits of an extra bus = Saved waiting cost + Saved discomfort cost
Costs of an extra bus = extra congestion delay to other road users + rental cost
+ operation cost of one bus + external environmental and accident costs of a bus.

Second best pricing of PT

- bus fare = marginal external cost of an additional bus user corrected for effect on the car market
- = additional time cost for other users due to mounting and alighting
- + additional crowding discomfort costs of an additional bus user
- (ratio of new bus users that leave their car) x (marginal external road congestion cost toll)

"DIVERSION RATIO" = ?0.15 to 0.35 ?

- When a reduction of fares of PT attracts 100 new passengers, 15 to 35 are ex car users
- If DIVERSION RATIO = 1, then pricing public transport is sufficient (except for deficit financing)

Outline

- First principles of pricing of road and PT
- Some numerical evidence
 - Stockholm (model of one corridor to the city but probably good cross-price elasticity information)
 - Paris ("full" model of the city)
- Getting political support for a pricing reform
- Conclusions

STOCKHOLM CORRIDOR: Replace uniform bus prices by high peak bus prices, and off peak prices can decrease to 0

Scenario	Road toll	Road toll	Bus fare	Bus fare	Frequency	Frequency	Deficit	Welfare
	Peak in	Off-Peak	Peak in	Off-Peak	Peak	Off-Peak	1000	Gain
	€/trip	in €/trip	€/trip	in €/trip	Bus/hour	Bus/hour	€/day	In 1000 €/day
Reference	1.80	1.00	2.18	2.18	67	48	25.86	
Optimal	1.80	1.00	4.50	0.00	67	48	26.54	12.58
Bus fare								
Only change frequency	1.80	1.00	2.18	2.18	92	13	15.38	22.20
Optimal toll, bus and frequency	4.31	3.32	4.90	0.97	84	20	-2.95	36.97
Zero car toll and optimal bus fare	0	0	4.10	0.00	67	48	30.19	14.12

STOCKHOLM CORRIDOR: If all prices are optimal, higher tolls on cars and peak bus prices are not so much higher and subsidy for bus no longer needed

Scenario	Road toll Peak in €/trip	Road toll Off-Peak in €/trip	Bus fare Peak in €/trip	Bus fare Off-Peak in €/trip	Frequency Peak Bus/hour	Frequency Off-Peak Bus/hour	Deficit 1000 €/day	Welfare Gain In 1000 €/day
Reference	1.80	1.00	2.18	2.18	67	48	25.86	
Optimal Bus fare	1.80	1.00	4.50 	0.00 ,	67	48	26.54	12.58
Only change frequency	1.80	1.00	2.18	2.18	92	13	15.38	22.20
Optimal toll, bus and frequency	4.31	3.32	4.90	0.97	84	20	-2.95	36.97
Zero car toll and optimal bus fare	0	0	4.10	0.00	67	48	30.19	14.12

STOCKHOLM CORRIDOR: How low should peak bus prices be if there would be no road tolls?

Scenario	Road toll Peak in €/trip	Road toll Off-Peak in €/trip	Bus fare Peak in €/trip	Bus fare Off-Peak in €/trip	Frequency Peak Bus/hour	Frequency Off-Peak Bus/hour	Deficit 1000 €/day	Welfare Gain In 1000 €/day
Reference	1.80	1.00	2.18	2.18	67	48	25.86	
Optimal Bus fare	1.80	1.00	4.50	0.00	67	48	26.54	12.58
Only change frequency	1.80	1.00	2.18	2.18	92	13	15.38	22.20
Optimal toll, bus and frequency	4.31	3.32	4.90	0.97	84	20	-2.95	36.97
Zero car toll and optimal bus fare	0	0	4.10	0.00	67	48	30.19	14.12

Conclude on Stockholm

 Need for higher peak bus prices whether road tolls are low or high

Paris: no road pricing – low PT prices

Figure 1 Model representation of Paris

4 categories of travellers: rich/ poor and working/not working, living in 4 zones Calibrated to traffic survey Do we need to complement the introduction of zonal road pricing of 3 Euro by an increase or a decrease of the PT fares?

- An INCREASE in PT peak fares generates more welfare than a PT fare decrease.
- Why? PT peak prices are already too low and not covering marginal operation costs so adding more users with low PT fares reduces welfare
- An increase in PT charges works better but hurts mainly the POORER households when net toll revenues are redistributed uniformly.
- When a double weighting is given to the utility change for the poor , the total efficiency of a PT price increase is still higher for society as a whole

Other elements

- Paris introduced flat monthly pass so that price becomes virtually zero ?
- London shows the nice example with peak/off peak differentiations and differentiations by zone
- Bottleneck congestion representation means steering finely departure times
 - Pricing pays off much more in limit generalised price does not increase (one substitutes queuing by tolling)
 - For road but also for Public Transport
- Pricing improves locational efficiency
 - Supply of public transport relocates economic activity but net gain ("wider economic benefits") not clear

Outline

- First principles of pricing of road and PT
- Some numerical evidence
 - Stockholm (model of one corridor to city)
 - Paris ("full" model of the city)
 - Other elements
- Getting political support for a pricing reform
 - Step 1: simple majority voting fixed total demand
 - Step 2: simple majority voting price-elastic PT demand
 - Step 3: why not decentralise pricing and investment decisions?
- Conclusions

Reforming transport pricing is difficult – why?-

- When a total welfare gain exists, one can , in theory, via compensation make everybody better off via redistribution policies BUT
- Information asymetry: values of time and schedule delay costs are individual-specific:
 - everybody claims compensation...
 - low income may be poor indicator of welfare loss
- Political mechanism decides

Where is the majority?

- Road pricing is a typical reform problem
 - Majority ex ante against but ex post in favour
 - because there is an expected loss for most car drivers they don't know how easy it is to adapt..
 - A referendum will not give a majority for an experiment
 - Because ex ante there is a loss for most drivers
 - Stockholm and London did not have a referendum before the test
- Promise to redistribute revenues to PT users via lower PT prices is efficient and may help to find a majority
 - IF total number of trips is price-inelastic

Outline

- First principles of pricing of road and PT
- Some numerical evidence
 - Stockholm (model of one corridor to city)
 - Paris ("full" model of the city)
 - Other elements
- Getting political support for a pricing reform
 - Step 1: simple majority voting fixed total demand
 - Step 2: simple majority voting price-elastic PT demand
 - Step 3: why not decentralise pricing and investment decisions?
- Conclusions

What happens with PT subsidies when public transport trips are price-elastic and diversion ratio (number of car users attracted) is small?

- Subsidy to PT attracts much more users but this is costly to accomodate
- Once the PT prices are low, it is difficult to find a majority for the grand reform that is needed as both car users and PT users will object higher peak prices.

Outline

- First principles of pricing of road and PT
- Some numerical evidence
 - Stockholm (model of one corridor to city)
 - Paris ("full" model of the city)
 - Other elements
- Getting political support for a pricing reform
 - Step 1: simple majority voting fixed total demand
 - Step 2: simple majority voting price-elastic PT demand
 - Step 3: why not decentralise pricing and investment decisions?
- Conclusions

Decentralise pricing to the metropolitan level?

- Opportunity is there as fuel consumption (traditional tax base) is disappearing in 10 years, in 20 years?
- Who can set prices?
 - Federal government but constitutionally it is difficult to state that city A pays a different charge than city B
 - So differentiation of charges has to come from decentralised decision making

Advantages and problems of decentralised pricing

- Costs of PT system will become clear
- Use of city roads and PT system by outsiders forces the cities to charge at least the marginal cost and even more
 - otherwise the inhabitants are subsidizing the outsiders
 - RISK of too large charges on road and PT
 - Can be solved by a federal constraint that forces cities to invest all charge revenues into operation or infrastructure extension – this together with non-discrimination between inhabitants and outsiders guarantees optimal pricing and investment

Conclusions

- Most cities have poor pricing of road transport AND of public transport (large market share)
- Low public transport prices only won't solve the road congestion issue
- Peak pricing of road and PT users is needed
- Obviously difficult political message
- Making cities responsible for pricing can make it easier