The Broader Benefits of Transportation Infrastructure

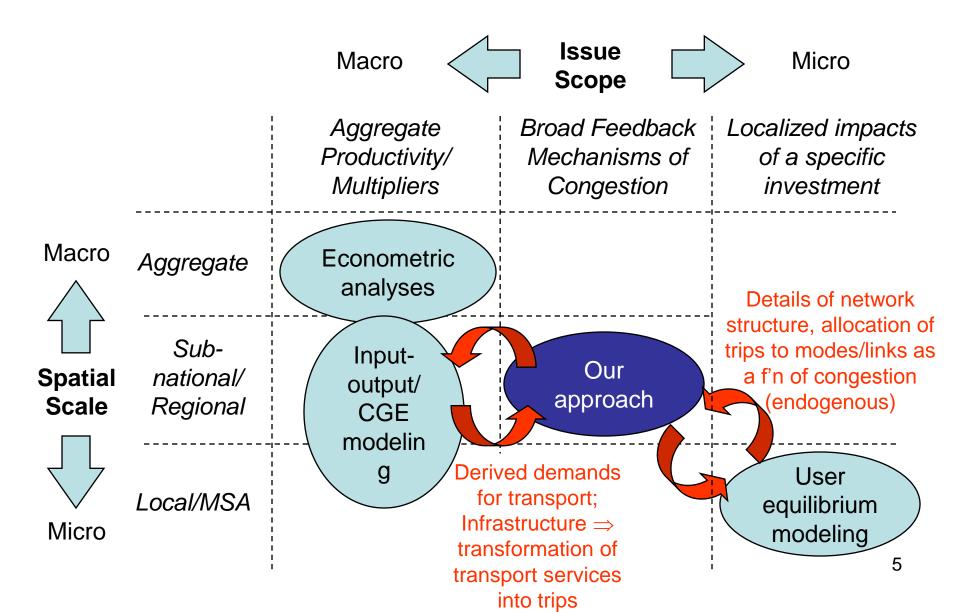
Ian Sue Wing, William P. Anderson and T.R. Lakshmanan

Center for Transportation Studies and Dept. of Geography & Environment Boston University

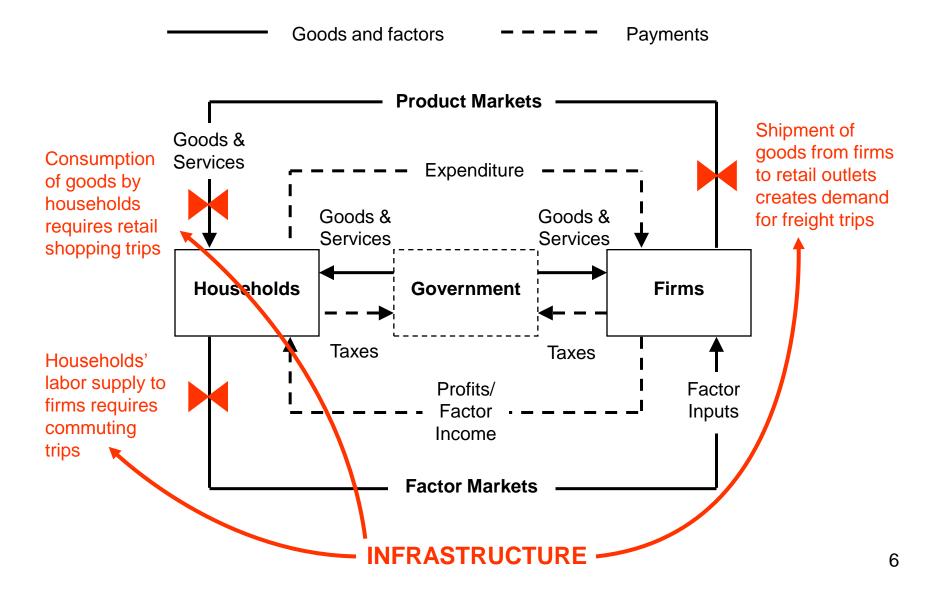
OECD/International Transport Forum Research Round Table Meeting "Macro, Meso and Micro-Infrastructure Planning and Assessment Tools" 25-26 October, 2007

Plan of Talk

- 1. Framing the issue
- 2. Previous literature
- 3. Our approach
- 4. Caveats, future work, and summary


Introduction

- Transport infrastructure provision = visible, vital, costly public sector contribution to private economy
- Decisions about the level/allocation of infrastructure investments suffer from incomplete information
 - Micro-scale analyses do not capture full range of economic benefits induced by a project/program
 - Macro-scale analyses are too broadly defined to provide guidance on the relative benefits of specific projects/programs
- Motivation for "meso-level" analytical tools
 - Need assessments that are both comprehensive (in the economy-wide sense) and able to represent specific infrastructure capacity expansions
- Meso-scale analysis for infrastructure planning: 3 requisites
 - 1. Incorporate information about specific additions or improvements to transportation infrastructure networks (not necessarily as detailed as micro-scale analyses)
 - 2. Trace economic processes triggered by infrastructure improvements
 - 3. Feasible to implement using data available at reasonable cost


Our Focus

- Long-run developmental impacts
 - Agglomeration of economic activity
 - Structural transformation of the economy (e.g., changing spatial patterns of production, creation of new industries/inter-industry linkages; shifts in households' preferences)
 - Non-market effects involving complex/ idiosyncratic interactions among economic, social, cultural and institutional factors
- Short-run general equilibrium impacts
 - Stable, arise from actions of a well-defined set of economic agents through the medium of markets
 - Myriad effects coursing through the economy consequent on the time and money savings induced by infrastructure improvements
 - Savings affect marginal costs of transport producers, individuals' mobility and demand for goods and services
 - Ripple through market interaction mechanisms \Rightarrow endogenous changes in employment, output, and incomes

"Meso-Level" Analysis in Context

The Circular Flow of the Economy and the General Equilibrium Effects of Transportation Infrastructure

Related Literature: CGE Models of Congestion

- Simple "maquette" models
 - Mayeres-Proost (1997)
 - Model congestion as a direct f'n of passenger + freight transport activity
 - Reduces quality of passenger transport consumed by hholds, productivity of final goods producers
 - Parry-Bento (2001, 2002)
 - Households have dual money and time budget constraints
 - Transport services either enter utility f'n directly or are necessary to ship final good from firm to households
 - Substitutability of trips among a few, very aggregate travel modes
- Realistic large-scale models
 - Conrad (1997), Conrad-Heng (2002)
 - Aggregate transport cost minimization \Rightarrow optimal level of infrastructure
 - Ratio of actual to optimal level of infrastructure capital \Rightarrow congestion
 - Congestion synonymous w/. capacity utilization:
 productivity of sectorspecific transportation capital stocks

Main Stylized Facts

- A-spatial, macro-level analysis
 - No details of transportation network \Rightarrow unable to resolve effects of particular infrastructure projects/programs
- Largely static: no capacity to capture developmental effects
- Illustrates elements of transport's GE effects
 - Economic activities create derived demand for trips
 - \uparrow Trip volumes + fixed infrastructure capacity = congestion
 - Congestion \uparrow time costs of consumption activity, \uparrow pecuniary costs of shipping goods to sources of demand
- Infrastructure investments alleviate congestion, raising the "speed limit" on economic activity
- Needed: comprehensive approach to elaborate mechanisms at work
 - Relationship b/w. congestion, value of time in a GE sense, taking into account all relevant interactions 8

Our Approach: A Transport-Focused CGE Model

- Aim: incorporate congestion mechanisms within static GE framework
 - No developmental impacts, but prerequisite to their characterization
 - Focus on elaborating model structure, empirical implementation left to future work
- Highlights
 - Derived demand for travel modeled as an aggregation of trips
 - Trip volumes modeled as a good which is allocated across modes and links of transport network
 - Firms partitioned into non-transport goods producers (NT), transport producers (T)
 - *NT*-type firms are "mills" supplying commodities, which are then shipped to sources of demand
 - *T*-type firms supply transport services to *NT* firms, households
 - Trips generated from inputs of transport services, network capacity (a fixed factor)

The Demand Side

- Economic activity \Rightarrow derived demand for travel
 - Household consumption \Rightarrow passenger shopping travel or retail delivery (*R*)
 - Household labor supply \Rightarrow passenger commuting travel (*C*)
 - Goods movement \Rightarrow freight (*F*)
- Travel modeled as an aggregation of trips
 - Travel consumers substitute trips among different travel modes (e.g., air, rail, ground passenger/freight), transit network links
 - Transport consumers allocate trips among mode-link alternatives to minimize travel expenditure
- Households have time budget constraints
 - Captures GE feedback of simulated economic activities on pivotal value-of-time metric employed in traditional CBA
 - − Infrastructure investment $\Rightarrow \downarrow avg. trip time \Rightarrow \uparrow retail, commuting trip volumes <math>\Rightarrow \uparrow$ income, consumption

Household Utility Maximization, Labor Supply, and Derived Demand for Retail and Commuting Trips

The Supply Side

- Transport producers
 - Each firm corresponds to a single mode of transit
 - Firms do not possess a time budget
 - No direct production of trips, rather, generalized transportation services (vehicles on road, trains on track, planes in air, etc.)
 - Intra-firm capital stock determines service supply capacity
- Trips modeled as transformation of transport services
 - T-type firms allocate transport services among different payloads (freight, retail, commuting) and links to maximize revenue
 - Speed (inverse of avg. travel time) along any link necessary to transform transport services into trips, = f(Link Capacity)

 \downarrow avg. trip time $\Rightarrow \uparrow$ freight trip volumes,

Infrastructure
Investment \Box \exists \exists ddddddddddddddddddddddddddddddd<th

Production in Non-Transport Firms and Derived Demand For Freight Trips

Transport Producers and the Supply of Retail, Freight and Commuting Trips

Supply-Demand Linkage: Transport Network Detail

- Transportation network
 - Links, modes = abstract (a-spatial) network representation
 - Focus only on subset of alternatives suffering from congestion
 - Mode-link alternatives are imperfect substitutes, w/. differing marginal trip costs to transport consumers, marginal trip revenues to transport producers
- Congestion and effects of infrastructure improvements
 - For each mode-link combination, avg. trip time ↑ rapidly as
 (∑ R Trips + ∑ C Trips + ∑ F Trips) > Link Capacity

(e.g., BPR capacity restraint formula)

- Avg. trip time the key variable in hhold time budgets, transport producers' ability to transform their output into trips
- Infrastructure improvement synonymous w/. ↑ link capacity
- Depending on which particular link(s) improved, impacts on trip volumes, economic variables can be very different

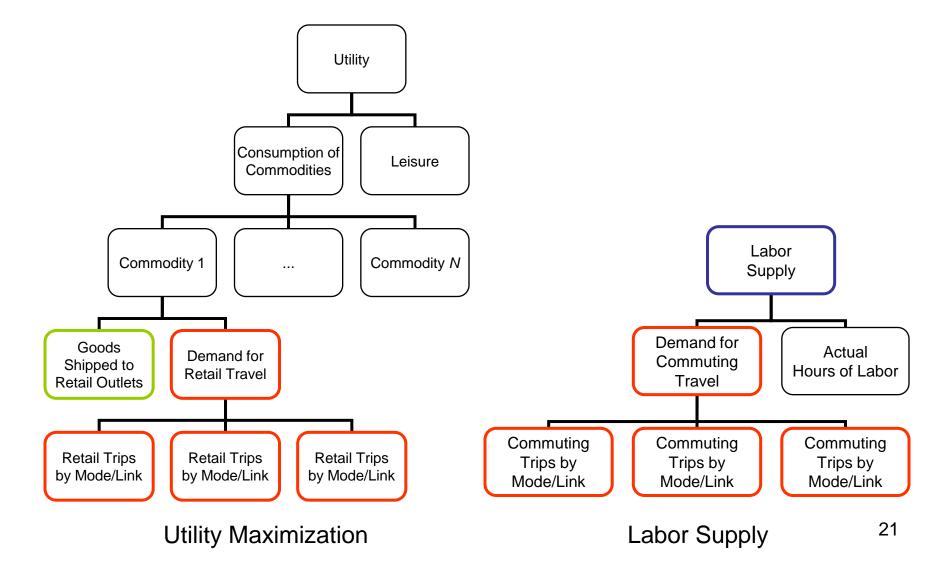
Data and Numerical Calibration: Implementational Issues

- Challenge: integrating incommensurate economic and transportation data
 - Normative question: what is the most appropriate geographic scale at which model should be specified?
 - Positive question: how to structure reduced-form representation of transit network?
 - Must be capable of being matched w/. relevant economic data, yet easy to calibrate
- Easy: calibrating of macroeconomic portion of model
 - Select substitution elasticity values for industries, representative hhold
 - Calculate technical coefficients of cost/expenditure functions using national- or regional-level social accounting matrix (SAM)
- Hard: calibrating elasticities + technical coefficients of trip aggregation, transformation functions
 - Substitution/transformation elasticities among trips
 - Drawn from literature vs. developed using our own econometric estimations
 - Quick & dirty approach: use Parry-Bento values
 - Need to aggregate key network characteristics, transport flows, input-output data to same geographic scale
 - Survey data on commuting and freight traffic flows available at MSA level
 - IMPLAN SAMs go down to county level
 - Possible solution: model major congested links in county aggregates which are coterminous w/. MSAs
 - Unsolved problem: details of defining network topology, assoc. traffic flows

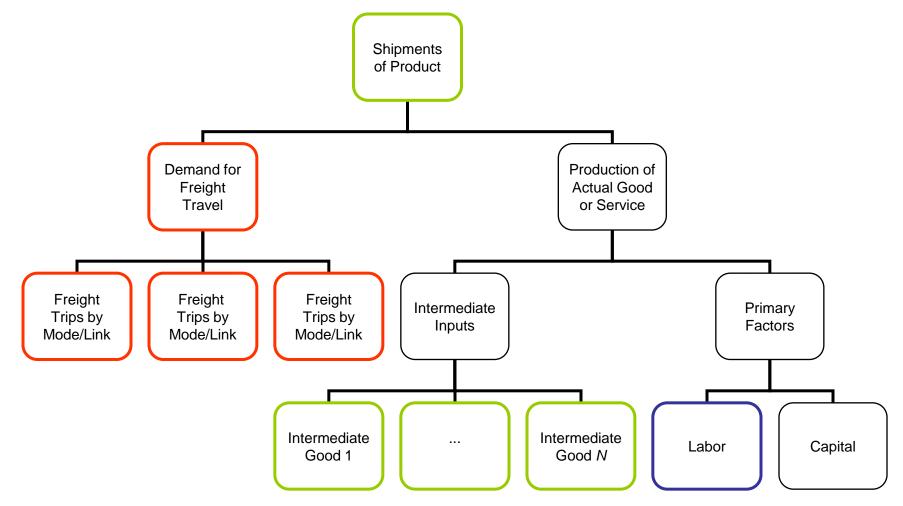
Summary and Conclusions

- A contribution to the CGE literature on transportation infrastructure
 - Advance over existing "maquette" models in technical sophistication, overall scope
 - Comprehensive elaboration of relevant structure \Rightarrow a practical tool for policy analysis
- Key features
 - Derived demands for trips due to production, consumption, labor supply
 - Hhold time budgets + transport producer time-based productivities ⇒ travel time explicitly embedded in GE determination of prices and quantities
 - Reduced-form transportation network representation: a set of capacitated mode-link combinations on which trips competitively assigned
 - Focus on congestion, modeled as increase in travel time
 - Infrastructure investments' mitigating effects based on a comprehensive, fully endogenous definition of the value of time
- Difficult implementational issues have yet to be surmounted
 - Appropriate geographical scale for application, network specification
 - Reconciling economic and transport data, computing calibrated parameters
- Is it worth the effort?
 - Empirical question: are broader economic benefits captured by our model significant w.r.t. direct effects captured by CBA?
 - Approach generates a range of information that cannot be obtained from existing analyses
 - Distribution of benefits: firms vs. households, among industries
 - Relative magnitude of hold benefits from consumption vs. time savings from commuting
 - Useful in assessing whether specific objectives that policy makers attach to a project are likely to be met.
 - Able to assess multiple, simultaneous capacity expansions: useful in identifying potential synergies among projects
- Ultimate value of approach
 - Elucidate a plausible set of economy-wide interactions triggered by infrastructure improvements
 - Explain relevant mechanisms rather than just quantify their impacts
 - Necessary to better understand economy-wide impacts of infrastructure, characterize developmental effects.

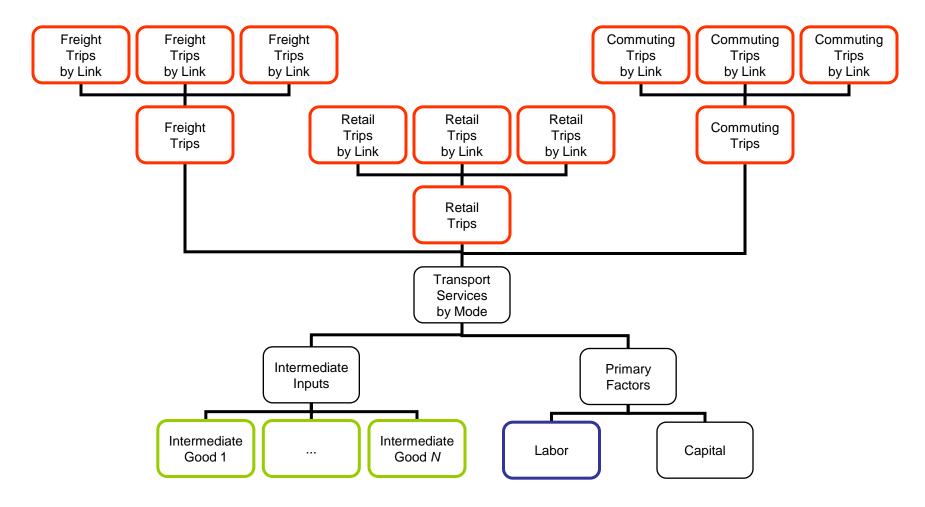
Extra Slides


Computable General Equilibrium: A Primer

- Circular flow = Walrasian equilibrium
 - Market clearance (*MC*): supply = demand for each commodity/factor
 - Zero profit (*ZP*): each firm's output price = marginal cost of production
 - Income balance (*IB*): hholds' factor income from factor returns = expenditure on commodities
- CGE models: algebraic expression of above
 - Parameters numerically calibrated on real-world data
 - System of equations solved for vector of prices that supports equilibrium
- Basic idea: imposition of producer and consumer optimization on the circular flow
 - Hholds max. utility \Rightarrow Final commodity demands = *f*(Prices)
 - Firms max. profits \Rightarrow Factor demands, Intermediate commodity demands = f(Prices)


Computable General Equilibrium: A Primer

- CGE model in a nutshell
 - <u>MC</u>: \sum Factor demands = Factor endowment,
 - \sum Commodity demands = Commodity supply
 - <u>*ZP*</u>: Commodity price Commodity supply = Σ (Commodity prices Intermediate deman
 - \sum (Commodity prices Intermediate demands)
 - + \sum (Factor prices Factor demands)
 - <u>*IB*</u>: \sum (Commodity prices Final commodity demands) = \sum (Factor prices Factor endowments)
- Solve for prices and quantities simultaneously
 - Find commodity/factor prices which satisfy above
 - Back substitute in demand functions to get quantities
- Our goal: integrate transport elements (►) into above framework in a consistent fashion


Household Utility Maximization, Labor Supply, and Derived Demand for Retail and Commuting Trips

Production in Non-Transport Firms and Derived Demand For Freight Trips

Transport Producers and the Supply of Retail, Freight and Commuting Trips

