VĽ

International Traffic Safety Data and Analysis Group

Speed changes and crash risk a case based study within IRTAD

Anna Vadeby, phD, Researcher in Traffic Safety at VTI Sweden.

Chair of the working group "Speed Changes and Crash Risk"

The IRTAD-working group

Chair Anna Vadeby, VTI Sweden
Blair Turner, ARRB, Australia
Klaus Machata, KfV, Austria
Tove Hels, Danish Police, Denmark
Sylvain Lassarre, IFSTTAR, France
Manuelle Salathé, ONISR, France
George Yannis, NTUA, Greece
Peter Hollo, Victoria Toth, KTI, Hungary
Davide Shingo, University La Sapienza, Italy
Ingrid Van Schagen, SWOV, Netherlands
Fred Wegman, Delft University, Netherlands
Rune Elvik, TOI, Norway
Alvaro Gomez, DGT, Spain
Terry Shelton, NHTSA, US
Graziella Jost, ETSC
Véronique Feypell, ITF

Contributions also from; Chris Cunningham, US, Institute for Transportation Research and Education, James Holgate, Australia, VicRoads, Victoria Gitelman, Technion - Israel Institute of Technology

Peer reviewers

Professor Max Cameron, Monash University, Australia Professor Richard Allsop, University College of London, UK

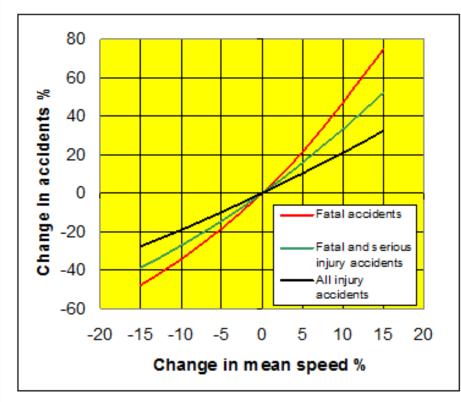
Content

- **Objectives** of the report (based on 11 case studies from 10 countries)
- What do we know about speed changes and crashes?
- Sample of 4 cases from 4 countries
- Conclusions and recommendations

International Traffic Safety Data and Analysis Group

Objectives of the report

• Produce an accessible report based on case studies from countries which recently experienced either a change in speed limits or a wide implementation of automatic speed control.


• Document objectively the relationship between speed changes and crash risks.

• Assess how data from actual case studies match the theoretical and empirical models available.

What we know about speed changes and crashes

Power model (Nilsson 2004, Elvik, 2009)

 $\frac{crashes after = crashes before * \left(\frac{speed after}{speed before}\right)^{exponent}$

Exponential model (Elvik, 2013)

crashes after = crashes before $* e^{\beta(speed after-speed before)}$

Cases collected in the report

Both speed and crash data required

Changes in speed limits

Hungary: Decrease in speed limit inside built-up areas (1993)
Hungary: Increase in speed limit outside built-up areas (2001)
Australia: Decrease in speed limits in urban areas (1997 – 2003)
Denmark: Increase in speed limit on part of the motorway network (2004)
Norway: Environmental speed limits on major roads in the city of Oslo (2004)
Sweden: A fundamental change in speed limits on rural roads (2008, 2009)
Israel: Increase in speed limits on selected rural roads and mv (2011, 2013)

Introduction of automated speed enforcement

France: Implementation of nationwide automated speed enforcement (2003)
United States: automated speed enforcement in 14 corridors in the city of Charlotte, North Carolina (2004)
Italy: Speed section control, Safety TUTOR, on motorways (2005)
Austria: Section control (2012)

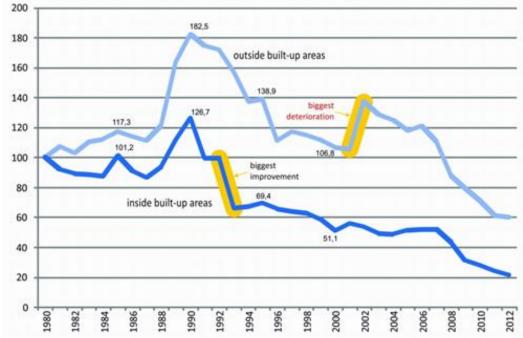
Case Hungary

Urban areas: 1 March 1993

- Decrease of speed limit, from 60 km/h to 50 km/h
- Covering 32 % of the state road network.
- Motivation: improvement of road safety, part of modification of Hungarian Highway Code.

Rural areas: 1 May 2001

- Increase of speed limit
 - from 120 km/h to 130 km/h on motorways
 - from 100 km/h to 110 km/h on semi-motorways
 - from 80 km/h to 90 km/h on rural roads
- Covering 68 % of the state road network.
- Motivation: political decision, part of the modification of HHC.

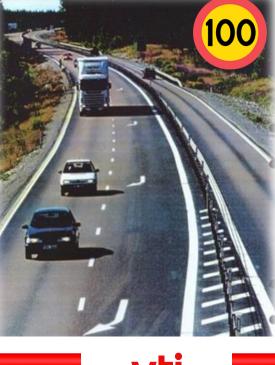

Results Hungary

Urban areas (60-50 km/h)

Speed: Decreased 8% Fatalities: Decreased 18%

Rural areas (80 – 90 km/h)

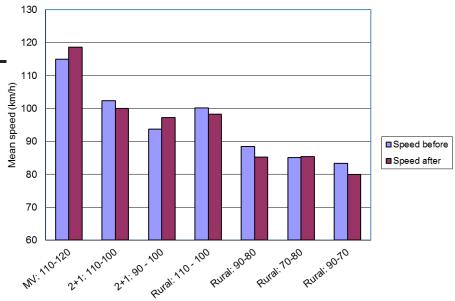
Speed: Increased 3% Fatalities: Increased 13%


Case Sweden

•

Increases and decreases of speed limits in 2008 and 2009

- Reductions mainly at 2-lane roads with poor safety standard
 - Increases mainly on 2+1 roads to 100 km/h and on MV with high standard to 120 km/h
- Motivation: Speed limits adapted to safety classification, balance between safety, environment and mobility/accessibility


Results Sweden:

Speed

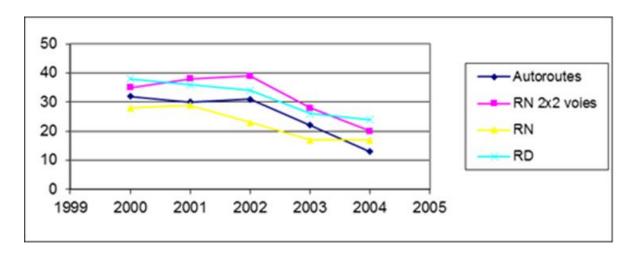
- Increase of speed limit 10 km/h increased mean speed by 3-4 km/h
- Decrease of speed limit by 10 km/h – decreased mean speed by 2-3 km/h.

Crashes

- Rural 90 80: fatalities decreased by 41%
- Motorways; increase of seriously injured by more than 100 %

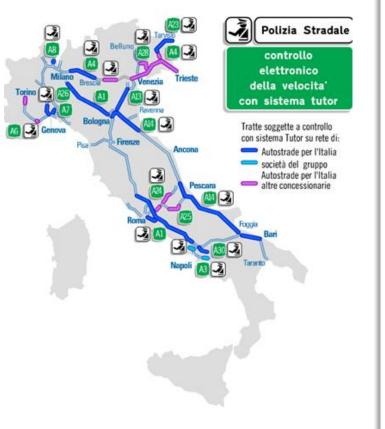
Case France

Introduction of automated speed cameras in 2003


- Motivation: President Chirac decided in 2002 to make road safety one of three major national priorities
- Between 2003 and 2009, 1661 fixed speed cameras were implemented supplemented by 932 mobile speed cameras.
- Large echo in the media and in social network about the increased number of fines due to excess speed

Results France

% exceeding speed limit + 10 km/h rural areas / interurban motorways.

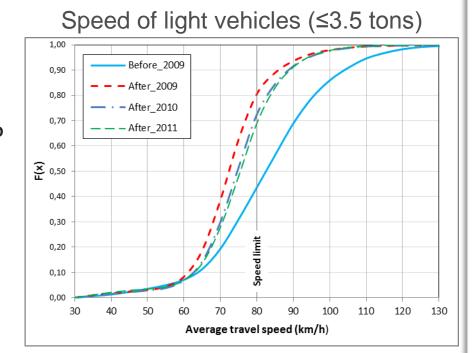


- Speed: From 2002 2005; average speeds fell by almost 9 km/h on secondary roads and almost 8 km/h on highways
- Crashes: (4 studies) Decrease in fatalities:
 - Rural areas 25-35%
 - Urban motorways 38%

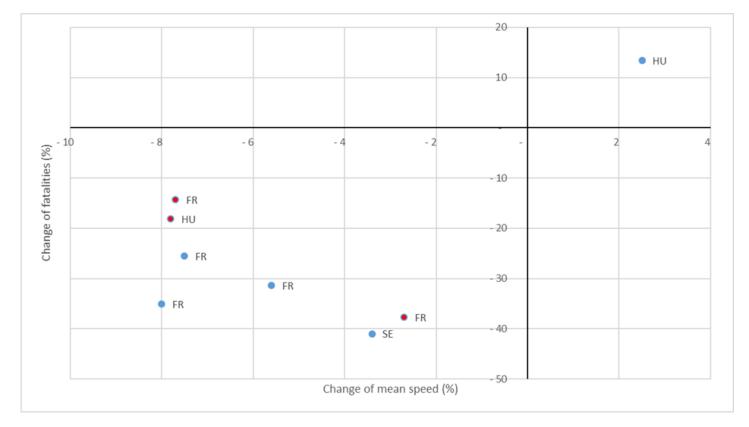
Case Italy

Implementation of Section Control (TUTOR)

- System introduced in 2006
- A total of 320 P2P speed camera sites, covering 2900 km of MV network
- Motivation: improve road safety.
- In 2012, system applied to 3 expressways
- Further implementation planned on regional and provincial highways


Results Italy A56 urban motorway

Speed (Light vehicles)


- mean speed decreased by 10%
- P85 decreased by 14%

Crashes

- reduced by 32%
- greater effect for severe injury crashes

Relationship between change of mean speed and change of fatalities

Blue = rural roads; Red = urban roads

Conclusions and recommendations

- Main conclusions: an increase in mean speed is associated with an increase in the number of crashes and injured and a decrease in mean speed is associated with a decrease in the number of crashes, fatalities and injured.
- Both the Power and Exponential model can be used to estimate the expected change in the number of crashes due to speed changes.
- All empirical results from the cases are in the same direction as estimated by the Power and Exponential model.
- Many injured road users are vulnerable road users. Death risk is 4-5 times higher in collisions between a car and a pedestrian at 50 km/h compared to 30 km/h - there is a strong recommendation to reduce speed in urban areas.

Conclusions and recommendations, cont

- To reduce road trauma, i.e. fatalities and injuries, governments need to take actions to reduce the speed on our roads and also to reduce differences in speed.
- As individuals, the risks for a severe crash might seem small, but from a societal point of view, there are substantial safety gains when the mean speeds on the roads are reduced
- In addition, lower vehicle speeds contribute to reductions greenhouse emissions, fuel consumption and noise.
- If a speed limit increase is envisaged, compensation measures should be implemented, such as more enforcement or an upgrade of the infrastructure.

irtad

International Traffic Safety Data and Analysis Group

Thank you for your attention! anna.vadeby@vti.se

