Stress Assessment of the Transport Handicapped Based on Biological Signals

- 1. Why stress assessment?
- 2. Method of stress assessment
- 3. Case studies

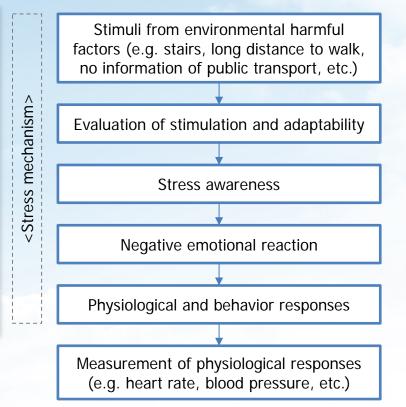
Why stress assessment ?

1.1 Limit of conventional evaluation approaches

Changes in transport policy goals

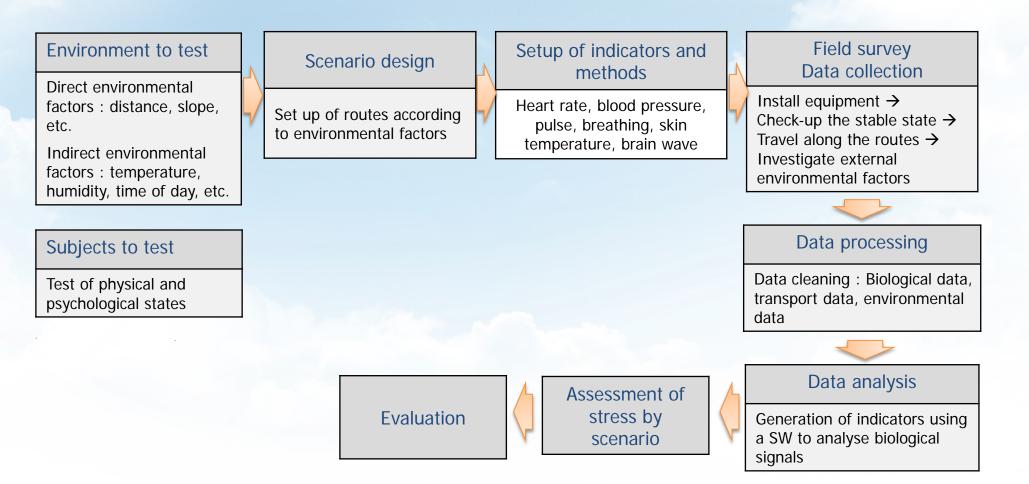
- Affordable, fast, safe, convenient + Comfortable and relax
- Maximum service supply + Minimum user disutility

Conventional evaluation methods


- Environmental evaluation
 - Indicators : environmental situation (i.e. distance by type, time)
 - Objective value and easy to understand qualitative aspects
 - Limit to understand the load experienced by users (i.e. how difficult for the transport handicapped to walk for 10 minutes)
- Psychology and cognitive evaluation
 - Indicators : subjective satisfaction using the Likert Scale
 - East to survey and good for qualitative evaluation
 - Limit in quantitative and objective assessment, different results depending on the survey group

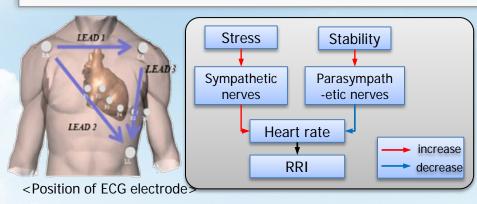
1.2 Stress assessment as an alternative approach

Improvement of conventional evaluation methods


- Corresponding to the paradigm change of policy and evaluation
- Enabling to understand the level of load experienced using a quantitative and objective indicators
- Enabling to understanding the relationship of cause and effect of stress
- Useful for ex-post evaluation
- Including more personalised characteristics

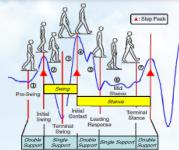
2 Method of stress assessment

2.1 Process of stress assessment



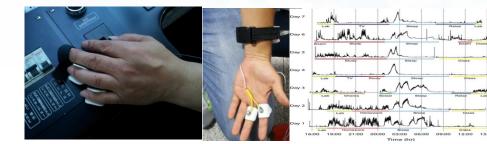
2.2 Equipment to measure biological signals

Electrocardiogram(ECG)


• Autonomic nervous system activity \rightarrow Electrical activity of hearts

3-axis acceleration sensor

 Measurement of vertical and horizontal movement → Understanding of walking patterns



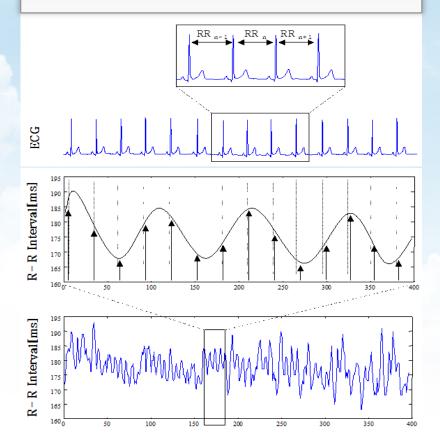
<Walking pattern from the vector sum of the movement

Electrodermal activity(EDA)

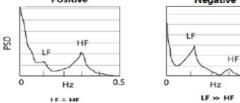
 Increase in secretion of sweat → Increase in EDA peak in times and magnitude

Goggle-type CCD camera

Look-ahead situation, visual direction, duration, etc.
 → Survey environment(stress factors) and changes



2.3 ECG signal analysis


Analysis of Heart Rate Variability

• Configuration in RR intervals(RRI) which indicate time difference between heart rates

Indicators using RRI

Ind	licators	Meaning					
Time Domain	mean RRI (msec)	Hear rate interval Average strength of the load caused by stress factors Lower mean RRI at the nervous state					
	mean BPM (number)	Heart rate per minuteHigher BPM at the nervous state					
	stdev RRI (msec)	 Degree to which RRI dispersed in average Too low stdev RRI is used as indicator for hig mortality rate 					
	RMSSD	Changes in the adjacent heart rate					
Frequency domain	Low frequency (LF) / High frequency (HF)	 The frequency analysis enables one to understand the equilibrium state of sympathetic and parasympathetic nerves 					
		 LF(0.04~0.15 Hz) related to sympathetic nerves → high at nervous or agitated states 					
		HF(0.15~0.4Hz) related to parasympathetic nerves \rightarrow low at furious states					
		 High LF/HF ratio indicates stress caused by psychological factors 					
		Positive Negative					

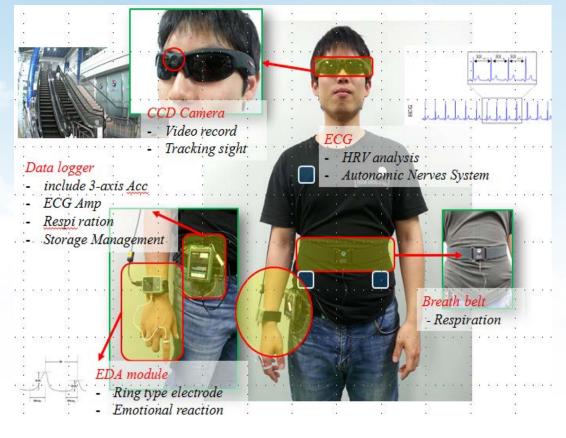
0.5

3.1 Stress measurement of the disabled in airport terminals

Purpose

To understand the factors that affect mobile load of airport terminal users with disability
 → Improvement of airport terminal facilities applying the concept of universal design

Subject : Wheelchair users, the visual impaired and general users


Scenarios

#	Characteristics	Travel environment						
S1	General user		Stairs	Ticketing	Shopping	Security	Toilet	Waiting for boarding
S2	General user	Waiting at entrance	Elevator					
S3	General user		Escalator					
S4	Wheelchair user with help		Elevator					
S 5	The visual impaired without help		Escalator					Jourding
S6	The visual impaired with help		Elevator					

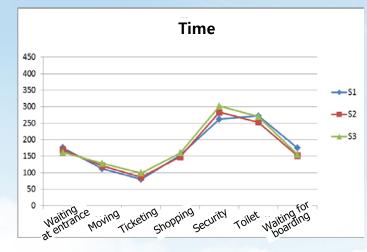
3.1 Stress measurement of the disabled in airport terminals

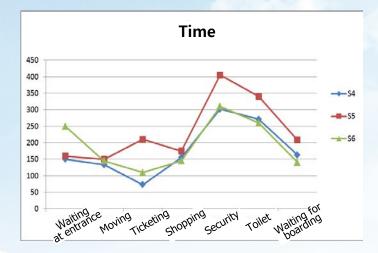
Evaluation indicators : movement, energy consumption(kcal), heart rate(Mean RRI and LH/HF)

Movement data and biological data collection

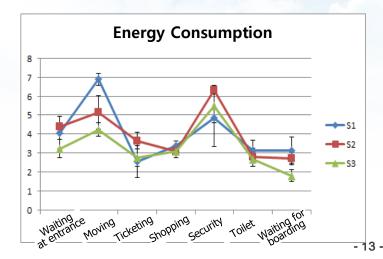
<Measurement equipment>

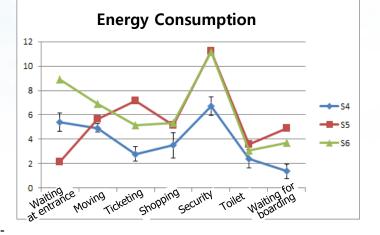
< Wheelchair user >



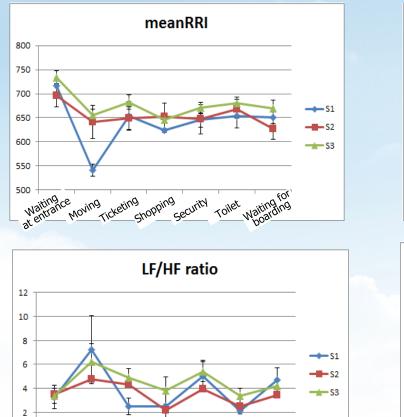

<The visual impaired>

3.1 Stress measurement of the disabled in airport terminals


Results


① Time and energy consumption

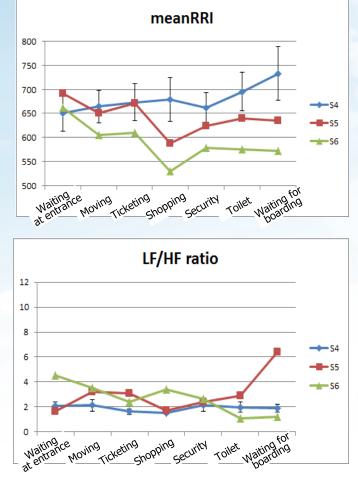
한국교통연구원



Stress measurement of the disabled in airport terminals 3.1

2 Stress indicators : mean RRI, LF/HF ratio

Waiting ce


0

Security

' Toilet

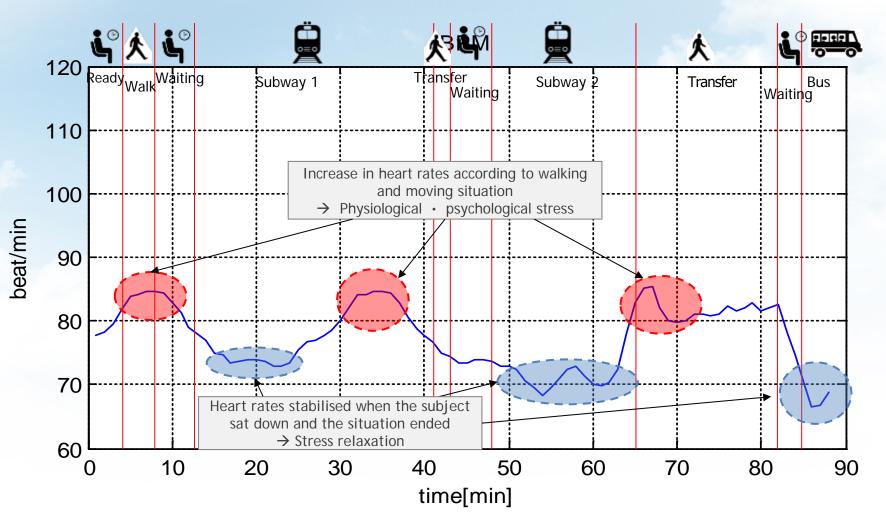
Moving Ticketing shopping

히국

Waiting for Waiting

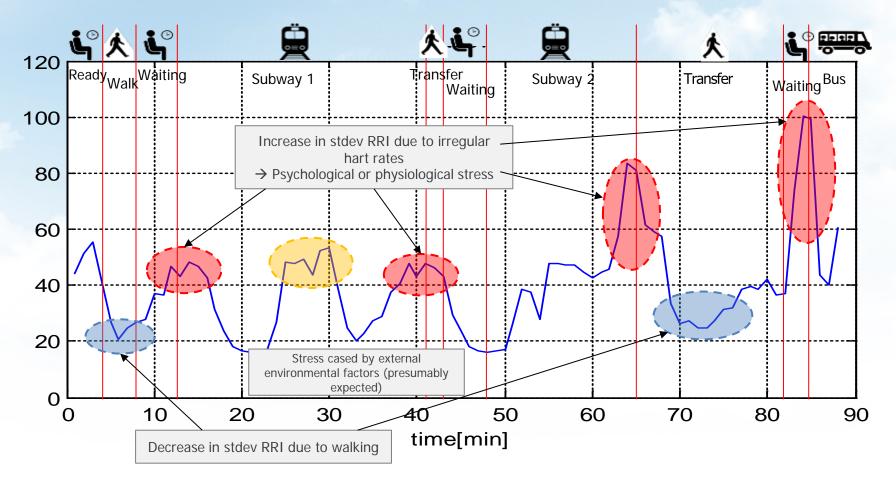
Purpose

- Pilot study to confirm where stress in travelling can be measured using biological signals
- To check difference of the level of stress that the elderly experience in public transport use
- To formulate a guideline of public transport facilities to improve accessibility of the elderly

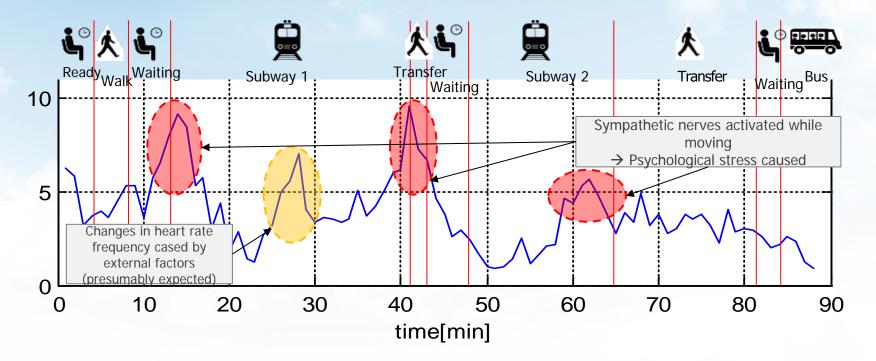

Survey environment

- Time of day : 10 am ~ 4 pm (non-peak time)
- Subjects
 - 1st survey : elderly 3 people(male), non-elderly 3 people
 - 2nd survey(3/1) : elderly 3 people(female), nonelderly 3 people

Scenarios


Section	Mode	Expected Time	Routes		
A place near Youngtong station			8842 +847 +847 +847 +847 +847 +847 +847 +847		
Youngtong station $ ightarrow$ Jungja station	Subway(Bundang line)	30 min.	구로 가 용착 가 긴 남역·신당선 + 바스 환승 명이 ~ · · · · · · · · · · · · · · · · · ·		
Jungja station	Walk (transfer)	-	·····································		
Jungja station $ ightarrow$ Gangnam station	Subway(New Bundang line)	20 min.	다.		
Gangnam station	Walk (transfer)	-			
Highway from Gangnam to Youngtong	Bus (no. 5100)	45 min.	· · · · · · · · · · · · · · · · · · ·		

➡ BPM


Mean RRI

- Close to zero when one has heart disease
- Increase at a stressful state when one does low-intensity activities
- · Decrease as RRI become constant when one does high-intensity activities

➡ LF/HF ratio

- When one get stressed, sympathetic nerves are activated and the hear rate increase
- Once sympathetic nerves are activated, parasympathetic nerves decrease, → Lf/HF ration increase

3.3 Lessons and future tasks

Lessons

- Stress assessment method can be an alternative to evaluate transport policy
- Stress can be an indicators to show physiological and psychological changes in making use of transport facilities
- Stress indicators can provide more objective and personalised results

Future tasks

- Development of stress measurement technology suitable for moving situation
- Development of comprehensive indicators using various types of stress indicators
- Data Processing techniques to deal with outliers that cannot be reasonably explained
- Determination of the acceptable level of stress in moving situation

Thank you

Thank you for listening.