

## UN vehicle regulations agreements Activities related to Heavy Duty Vehicles Fuel Economy

ITF, Paris, June 2018

François Cuenot

Vehicle Regulations and Transport Innovation Section Mechanical Engineer

(Secretary of the Working Party on Pollution and Energy, GRPE)



# Content

#### I. WP.29

- a) WP.29 Activities
- b) WP.29 scope and organization
- II. The tools of WP.29
  - a) Vehicle approval: the 1958 Agreement
  - b) Vehicle certification: the 1998 Agreement
  - c) Periodic technical inspections (PTI): the 1997 Agreement
- III. Latest activities on Heavy Duty Fuel Economy





# Content

### I. WP.29

- a) WP.29 Activities
- b) WP.29 scope and organization
- II. The tools of WP.29
  - a) Vehicle approval: the 1958 Agreement
  - b) Vehicle certification: the 1998 Agreement
  - c) Periodic technical inspections (PTI): the 1997 Agreement
- III. Latest activities on Heavy Duty Fuel Economy





# The World Forum for Harmonization of Vehicle Regulations (WP.29)

- UNECE Sustainable Transport Division: secretariat to WP.29 for more than 60 years
- WP.29 is:
  - the unique worldwide regulatory forum for the automotive sector
  - administrating three Multilateral UN Agreements





Construction regulations 1958 Agreement – Type Approval Regulations with mutual recognition of the type approvals 1998 Agreement – Global Technical Regulations

#### In Use PTI regulations

**1997 Agreement** – Adoption of Uniform Conditions for Periodical Technical Inspections of Wheeled Vehicles and the Reciprocal Recognition of Such Inspection





# What is WP.29 doing?



Emissions of pollutants and CO<sub>2</sub>











Lighting and light signalling





### WP.29 is worldwide, unique and transparent

- Agreements open to all Nations of the UN
- Participation open to States, Governmental Organizations (GOs) and NGOs, but
   Decisions are taken by
  - Governments (of CPs)



Countries contracting parties to Vehicle Regulations Agreements Number of Agreements

No other worldwide organization covers this area





# Content

#### I. WP.29

- a) WP.29 Activities
- b) WP.29 scope and organization

#### II. The tools of WP.29

- a) Vehicle approval: the 1958 Agreement
- b) Vehicle certification: the 1998 Agreement
- c) Periodic technical inspections (PTI): the 1997 Agreement
- III. Latest activities on Heavy Duty Fuel Economy





## Principal Elements of the 1958 Agreement

### Eligible Contracting Parties to the **1958** Agreement:

Members of UN

The 1958 Agreement provides:



Legal framework for the adoption of uniform UN Regulations on the vehicle construction

Reciprocal recognition of Type Approval Approved once and accepted everywhere(CPs) Elimination of barriers to trade



## Principal Elements of the 1958 Agreement

**FRANSPOR** 



All vehicle parts and systems approved according to UN Regulations under the 1958
 Agreement bear the unique E -marking



### **Current Status**



- More than 140 Regulations annexed to the 1958 Agreement
- Covering all kind of products and their parts

- Evolution of the Agreement (Revision 3):
  - Entry into force: 14 September 2017
  - Possibility to apply former versions of a Regulation (e.g. possibility to use EURO 4 or EURO 5 while there is now at EURO 6)
  - DETA (Database of the exchange of Type Approval documentation)





## Principal Elements of the 1998 Agreement

### Eligible Contracting Parties to the 1998 Agreement:

Members of UN

The 1998 Agreement provides:



Legal framework for the adoption of uniform Global Technical Regulations - UN GTRs -

No administrative provisions (for self certification and homologation)





### Principal Elements of the 1998 Agreement

Contracting Parties to the 1998 Agreement

Commit themselves to implement a GTR into national legislation, when voting in favour

Need a system/agency for market surveillance and enforcement of production compliance

The 1998 Agreement requests

Regular reporting by Contracting Parties on the implementation of GTRs in their national law





## Content

#### I. WP.29

- a) WP.29 Activities
- b) WP.29 scope and organization
- II. The tools of WP.29
  - a) Vehicle approval: the 1958 Agreement
  - b) Vehicle certification: the 1998 Agreement
  - c) Periodic technical inspections(PTI): the 1997 Agreement

### III. Latest activities on Heavy Duty Fuel Economy



## Heavy Duty Fuel Economy



- HDV FE measurements and standards enforced and/or considered in all major markets
- Methodologies to measure FE/CO2 emissions from trucks differs from country to country
- Industry representative and contracting parties willing to harmonize measurement procedure



## **Steps for Harmonization**

|             | Elements                  | Sub-Elements                | Issues                                                                           | Examples                                                                                   |  |
|-------------|---------------------------|-----------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--|
|             | FE Unit                   | -                           | Transport efficiency or<br>Easy to understand for everybody                      | - km/L<br>- ton.km/L                                                                       |  |
|             | Others                    | Criteria                    | Limit of FE value or average value                                               | - Averaged by number of sales<br>- CAFÉ                                                    |  |
|             | Vehicle<br>classification | -                           | Simpler category is desired, but needs to reflect to real world compexity        | - Vehicle type (Tractor, busetc)<br>- GVW, type of cabin                                   |  |
|             | Items of FE<br>effect     | -                           | Accuracy vs. cost of measurement<br>Contribution for FE                          | - Engine, T/M<br>- Aero dynamic and rolling resistance                                     |  |
|             | Driving Mode              | -                           | Vehicle speed base or road data base<br>less complexity vs real world reflection | - Combination of two cycles<br>- Unique mode for each vehicle type                         |  |
|             |                           | Chassis<br>dynamometer      | Should Chassis dynamometer measurement be used                                   |                                                                                            |  |
|             |                           | Simulation                  | Should simulation be used<br>Driver model contents                               | <ul> <li>Common calculation logic</li> <li>Difference of steady and transient</li> </ul>   |  |
|             | Measurement               | Engine<br>measurement       | Number of measurement points<br>Transient operation effect                       | - CO2 measurement by engine<br>- Engine FE map and simulation                              |  |
|             | Method                    | Aero dynamic<br>measurement | Measurement methods<br>Selection of vehicle type, rear body                      | - Coast down, steady speed drive<br>- CFD - Wind tunnel                                    |  |
|             |                           | Tyre rolling resistance     | Measurement method, labeling                                                     | <ul> <li>Common tyre measurement method</li> <li>How to handle a number of axis</li> </ul> |  |
| Source:OICA |                           | Others                      | Measurement method                                                               | - Driveline drag, Auxiliary drag, etc                                                      |  |

## **Steps for Harmonization**

|             | Elements               | Sub-Elements                | Issues                                                                           | Examples                                                                                 |
|-------------|------------------------|-----------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
|             | FE Unit                | -                           | Transport efficiency or<br>Easy to understand for everybody                      | - km/L<br>- ton.km/L                                                                     |
|             | Others                 | Criteria                    | Limit of FE value or average value                                               | - Averaged by number of sales<br>- CAFÉ                                                  |
|             | Vehicle classification | -                           | Simpler category is desired, but needs to reflect to real world compexity        | - Vehicle type (Tractor, busetc)<br>- GVW, type of cabin                                 |
|             | Items of FE<br>effect  | -                           | Accuracy vs. cost of measurement<br>Contribution for FE                          | <ul> <li>Engine, T/M</li> <li>Aero dynamic and rolling resistance</li> </ul>             |
|             | Driving Mode           | -                           | Vehicle speed base or road data base<br>less complexity vs real world reflection | <ul> <li>Combination of two cycles</li> <li>Unique mode for each vehicle type</li> </ul> |
|             |                        | Chassis<br>dynamometer      | Should Chassis dynamometer measurement be used                                   |                                                                                          |
|             |                        | Simulation                  | Should simulation be used                                                        | <ul> <li>Common calculation logic</li> <li>Difference of steady and transient</li> </ul> |
|             | Measurement<br>Method  | Engine<br>measurement       | Number of mersurer ent points<br>Transpent operation offect                      | Coz masurement by engine<br>- Engine FE map and simulation                               |
|             |                        | Aero dynamic<br>measurement | Measurement methods<br>Selection of vehicle type, rear body                      | - Ceast down, steady speed drive<br>- CFD - Wind tunnel                                  |
|             |                        | Tyre rolling resistance     | Measurement method, labeling                                                     | - Common tyre measurement method<br>- How to handle a number of axis                     |
| Source:OICA | R                      | Others                      | Measurement method                                                               | - Driveline drag, Auxiliary drag, etc                                                    |

## **Steps for Harmonization**

| Elements                  | Sub-Elements                | Issues                                                                           | Examples                                                                                 |  |
|---------------------------|-----------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--|
| FE Unit                   | -                           | Transport efficiency or<br>Easy to understand for everybody                      | - km/L<br>- ton.km/L                                                                     |  |
| Others                    | Criteria                    | Limit of FE value or average value                                               | - Averaged by number of sales<br>CAFÉ                                                    |  |
| Vehicle<br>classification | <b>3</b> 6                  | s impler category is desired, buineeds to reflect to mal world compekity         | Vehicle yper(Tractor, busetc)<br>GV (, type = { carin                                    |  |
| Items of FE<br>effect     | -                           | Accuracy vs. cost of measurement<br>Contribution for FE                          | <ul> <li>Engine, T/N</li> <li>Aero dynamic and rolling resistance</li> </ul>             |  |
| Driving Mode -            |                             | Vehicle speed base or road data base<br>less complexity vs real world reflection | <ul> <li>Combination of two cycles</li> <li>Unique mode for each vehicle type</li> </ul> |  |
|                           | Chassis<br>dynamometer      | Should Chassis dynamometer measurement be used                                   |                                                                                          |  |
|                           | Simulation                  | Should simulation be used                                                        | - Common calculation logic<br>- Difference of steady and transient                       |  |
| Measurement               | Engine<br>measurement       | Number of mersurer ent points<br>Transpent operation offect                      | Cuz masurement by engine<br>- Engine FE map and simulation                               |  |
| Method                    | Aero dynamic<br>measurement | Measurement methods<br>Selection of vehicle type, rear body                      | - Ceast down, steady speed drive<br>- CFD - Wind tunnel                                  |  |
|                           | Tyre rolling resistance     | Measurement method, labeling                                                     | - Common tyre measurement method<br>- How to handle a number of axis                     |  |
|                           | ANSPORT<br>Others           | Measurement method                                                               | - Driveline drag, Auxiliary drag, etc                                                    |  |

### Key Elements of FE Measurement

#### • Simulation

Simulation is introduced to evaluate HDV with fuel efficiency.

Mathematical method of simulation seems similar for each software.

Input data differs because of the difference of concept or FE items.

|                |                            | Status of each region |                       |                       |                       |                          |
|----------------|----------------------------|-----------------------|-----------------------|-----------------------|-----------------------|--------------------------|
| Classification | ltem                       | EU                    | US/GEM China          | Japan                 | Remarks               |                          |
|                |                            | /VECTO                | $(Phase\mathbf{I})$   | China                 | (FES2025)             |                          |
|                | Vehicle Category           | ~                     | <b>v</b>              | <b>v</b>              | ~                     |                          |
|                | Curb Weight                | ~                     | <b>v</b>              | <ul> <li>✓</li> </ul> | <b>v</b>              |                          |
|                | Gross Vehicle Weight       | <ul> <li>✓</li> </ul> | <b>v</b>              | V                     | <ul> <li>✓</li> </ul> |                          |
|                | Maximum Payload            | <ul> <li>✓</li> </ul> | <b>v</b>              | <ul> <li>✓</li> </ul> | <ul> <li>✓</li> </ul> |                          |
| Vehicle        | Gross Combination Weight   | ~                     | <b>v</b>              | <b>v</b>              | <b>v</b>              |                          |
| Parameters     | Rated Passenger Capacity   | ~                     | <ul> <li>✓</li> </ul> | ✓                     | <b>v</b>              |                          |
| T arameters    | Axle Configuration         | ~                     | -                     | ~                     | -                     |                          |
|                | Axle Number                | ~                     | -                     | <b>v</b>              | -                     |                          |
|                | Aero drag (Cd)             | ~                     | <ul> <li>✓</li> </ul> | <b>v</b>              | <b>v</b>              |                          |
|                | Auxiliary                  | ( <b>v</b> ) *        | -                     | _                     | -                     | * By spec. of technology |
|                | Engine Fuel Map            | ~                     | <ul> <li>✓</li> </ul> | ~                     | V                     |                          |
|                | Full Load Engine Torque    | ~                     | <ul> <li>✓</li> </ul> | ~                     | v                     |                          |
| Engine         | Motored Engine Torque      | <b>v</b>              | <ul> <li>✓</li> </ul> | <b>v</b>              | V                     |                          |
|                | Idling Speed               | ~                     | <b>v</b>              | <b>v</b>              | <ul> <li>✓</li> </ul> |                          |
| Parameters     | Rated Engine Speed         | ~                     | <b>v</b>              | <b>v</b>              | <ul> <li>✓</li> </ul> |                          |
|                | Maximum Engine Speed       | ~                     | <ul> <li>✓</li> </ul> | <ul> <li>✓</li> </ul> | -                     |                          |
|                | Transient Engine Map       | _                     | ~                     | -                     | _                     |                          |
|                | Transmission type          | ~                     | <b>v</b>              | -                     | <ul> <li>✓</li> </ul> | MT,AT,AMT                |
|                | Number of gear             | ~                     | <b>v</b>              | <b>v</b>              | <ul> <li>✓</li> </ul> |                          |
| Duine (main    | Transmission gear ratio    | ~                     | <ul> <li>✓</li> </ul> | <ul> <li>✓</li> </ul> | <b>v</b>              |                          |
| Drive train    | Transmission drag          | ~                     | <ul> <li>✓</li> </ul> | -                     | <b>v</b>              |                          |
|                | Final reduction gear ratio | ~                     | ~                     | ~                     | ~                     |                          |
|                | Drive axle drag            | ~                     | ~                     | _                     | ~                     |                          |
| Time           | Rolling radius             | ~                     | ~                     | ~                     | ~                     |                          |
| Tire           | Rolling resistance         | <b>v</b>              | <b>v</b>              | <b>v</b>              | <b>v</b>              |                          |

#### **TRANSPOR**

Source:OICA

## Heavy Duty Fuel Economy



- Contracting Parties have shown interest in developing the activity
- 1-day workshop during the WP.29/GRPE January 2019 session
- Likely on 7th of January 2019
- Co-organized by OICA and UNECE
- Participants welcome



# Conclusion: The advantages of international tech. regs

9 🚘 🗃

For the business sector:

- The "safe harbor"
- Harmonized requirements
- Simpler export (less/no technical barrier)
- Less uncertainty about market acceptance

For Countries and their citizens:

- Safety
- State of the art technologie
- Better trade
- Interoperability
- Facilitated border crossing







# THANK YOU FOR YOUR ATTENTION

UNECE Sustainable Transport Division

http://www.unece.org/trans

francois.cuenot@un.org

