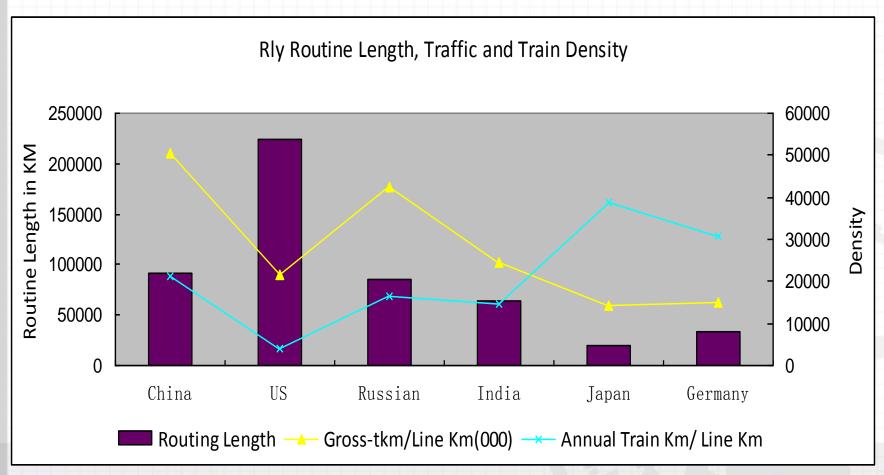


The Financial and Economic Assessment of China's High Speed Rail Investments Jianhong Wu Beijing Jiaotong University OECD/ITF Roundtable on The Economics of Investment in High Speed Rail, New Delhi, India, 18-19 December 2013

Main Content

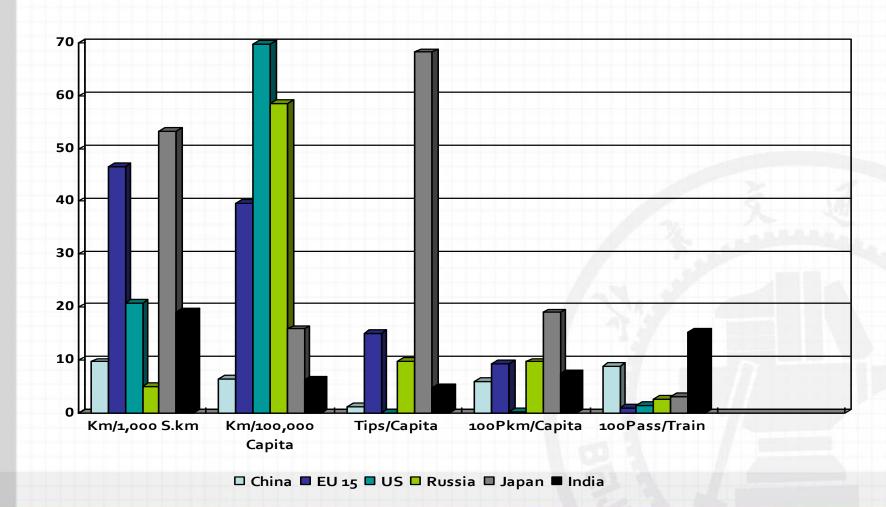
1. INTRODUCTION

- 2. THE COST OF BUILDING HSR INFRASTRUCTURE AND ITS COMPOSITION IN CHINA
- 3. THE INITIAL OPERATIONAL PERFORMANCE OF HSR IN CHINA
- 4. FINANCIAL ASSESSMENT OF CHINA'S HSR INVESTMENT
- 5. ECONOMIC ASSESSMENT OF CHINA'S HSR INVESTMENTS
- 6. SOME TENTATIVE CONCLUSIONS



1. INTRODUCTION

- The background of building HSR in China: lack of capacity
- The key role of HSR plan in China's Rapid Railway Development Plan
- HSR construction and its implementation by 2012

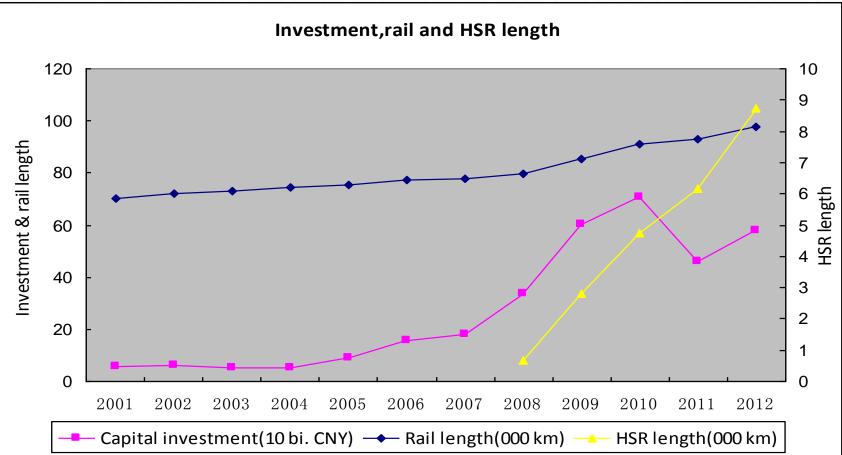


International Comparison on Routing Km vs. Traffic and Train Density

Network Density, Average Annual Rail Trips and Pass-Km per Capita



Rail Congestion during Chinese New Year




Dramatic increases of rail capital investment &

HSR length since 2005

HSRs network plan and its implementation in China by 2012

2. THE COST OF BUILDING HSR INFRASTRUCTURE AND ITS COMPOSITION IN CHINA

Estimated unit construction cost for 250 km/h HSL

HS Line	Design speed (kmph)	Length (km)	Estimated unit construction cost (m euro /km)
Hefei-Nanjing	250	156	6.03
Qingdao-Jinan	250	393	6.27
Shijiazhuang-Taiyuan	250	190	14.48
Coastal HSL	250	650	7.24
Chengdu-Dujiangyan	250	67	18.10
Changchun-Jilin	250	96	10.81
Hainan East Circle	250	308	8.69
Wuhan-Yichang	250	293	9.78
Average construction cost	t of the HSL w	ith 250kph	8.84

Estimated unit construction cost for 350 km/h HSL

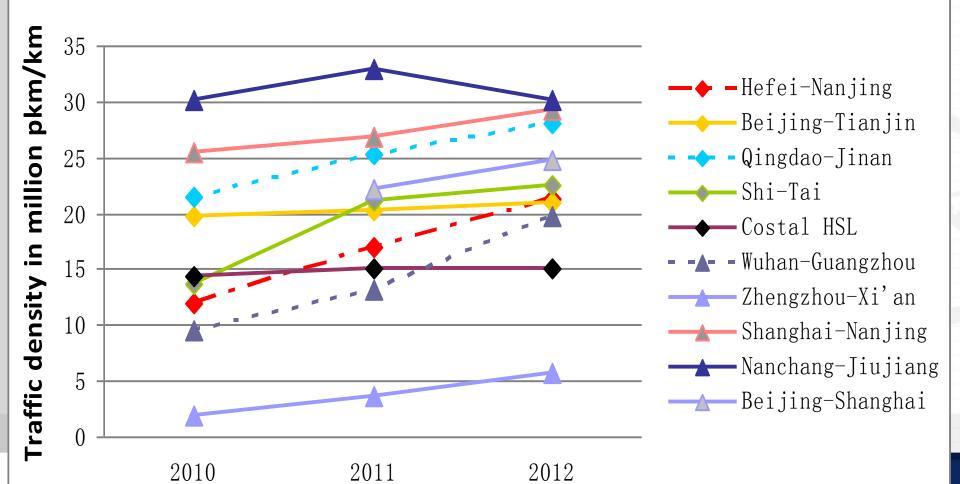
HS Line	Design speed (kmph)	Length (km)	Estimated unit construction cost (m euro /km)
Beijing-Tianjin	350	120	20.51
Wuhan-Guangzhou	350	1068	15.69
Zhengzhou-Xi'an	350	456	12.07
Shanghai-Hangzhou	350	154	22.93
Guangzhou-Shenzhen	350	104	27.57
Zhengzhou-Wuhan	350	536	15.66
Harbin-Dalian	350	921	13.30
Beijing-Shanghai	≥350	1318	19.31
Average construction co	ost of the HSL with	h 350kph	16.50

The cost difference between 250km/h & 350km/h

- The average unit cost of 350 km/h was about 90% higher than that of 250 km/h.
- The major reason is because it has to be elevated to accommodate the common use of slab tracks.
- The average ratios of the bridges and tunnels length to the route length was 74% for the HSR with design speed of 350 km/h and it raised as high as 90% for some specific projects.

THE HSL COST COMPOSITION in China

- Includes the infrastructure, superstructure and land costs.
- The average cost ratio of the infrastructure and superstructure are respectively around 60% and 20%, of which the bridges and tunnels are over 45% of the total cost.
- In general, the cost of HSL varies enormously, between 8.00 and 30.00 million Euros


經濟管理學院

3. THE INITIAL OPERATIONAL PERFORMANCE OF HSR IN CHINA

Estimation of HSR traffic density from 2010-2012

Traffic density on selected HSRs

The tariff level and estimated load factors of HSR lines

HS Lines	Tariff of 1st class of HST	Tariff of 2nd class of HST (euro/pkm)	Tariff of 2nd class of fast CT	Tariff of 2nd class of slow CT	Estima load factor	
	(euro/pkm)		(euro/pkm)	(euro/pkm)	HST	СТ
Average level of the HST and CT running on 250kph lines	0.045	0.037	0.019	0.009	65	93
Average level of the HST running on 350kph or over lines	0.082	0.054			55	

經濟管理學院

4. FINANCIAL ASSESSMENT OF CHINA'S HSR INVESTMENT

A preliminary analysis with very limited public data

- 50%-70% of HSL investment was from market borrowing.
- Very large traffic volumes are needed to support the high financial, depreciation, and operating and maintenance costs
- For most of the operating HSRs, the initial financial performance was poor when compared with the ex-ante appraisals.

Estimate financial results of 4 HSL projects (m. CNY)

Item	2009	2010	2011	2012
Beijing-Tianjin	-702.59	-612.59	-661.16	-639.32
Wuhan-Guangzhou		-3255.00	-2045.65	-1003.04
Zhengzhou-Xi'an		-2192.92	-1990.40	-1762.56
Jian-Qingdao		3.92	192.83	333.42

北京交通大学 經濟管理學院

The break-even traffic density of HSRs

	Tokaido Shinkansen*	Paris- Lyon TGV*	Beijing- Shanghai HSL	Wuhan- Guangzhou HSL	Qingdao- Jinan HSL	Beijing- Tianjin HSL	Zhengzhou- Xi'an HSL	China HSL (with 350 kph) in average
Tariff (Euro/pkm) in 2010	0.195	0.121	0.051	0.056	0.037	0.058	0.058	0.056
Traffic density (m pkm/km) in 2010	80	20	25	14	25	20	4	
Annual revenues per Km (m Euro/Km)	15.6	2.42	1.275	0.784	0.925	1.16	0.232	A.
Unit construction cost (m Euros /km)	34.00	15.20	19.31	15.69	6.27	20.51	12.07	15.68
I/O ratio per Km **	0.4589	0.1592	0.0660	0.0500	0.1475	0.0566	0.0192	
Initial financial performance	Full recovery of investment within 8 years	FIRR= 15%	Loss	Loss	Break- even	Loss	Loss	Break- even
Break-even traffic density corresponding to I/O ratio=0.145 (m pkm/km)	25.28	18.22	54.90	40.63	24.57	51.28	30.18	40.60

**: refers to traffic density* Tariff/unit construction cost

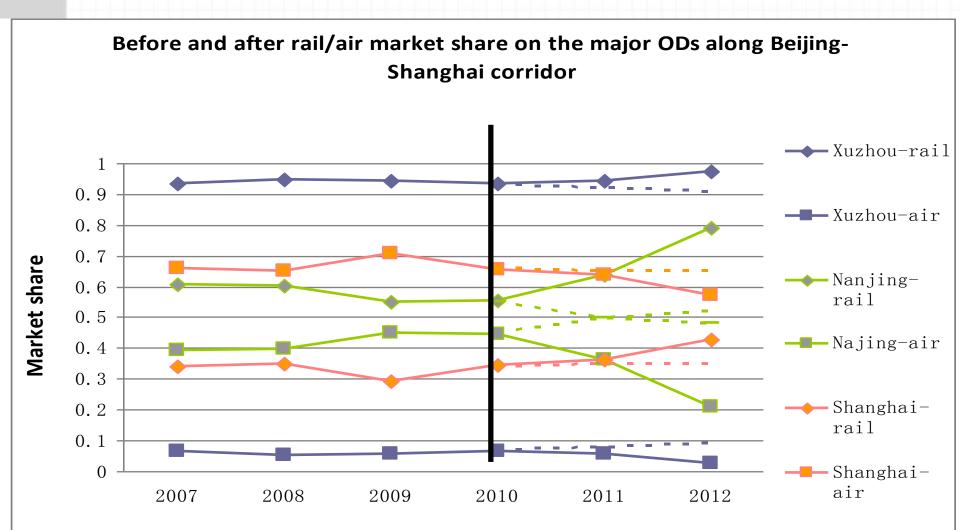
5. ECONOMIC ASSESSMENT OF CHINA's HSR INVESTMENTS

- 5.1 Mode split , the competition between HSR & air
- 5.2 Time savings
- 5.3 The break even traffic to justify the investment of a HSL in terms of time savings
- 5.4 Additional capacity and its benefits
- 5.5 Reduced externalities from other modes
- 5.6 Wider economic impact
- 5.7 Some trial ex-post cost-benefit analysis of HSR projects

北京交通大学 經濟管理學院

5.1 Estimate traffic composition of 3 HSRs

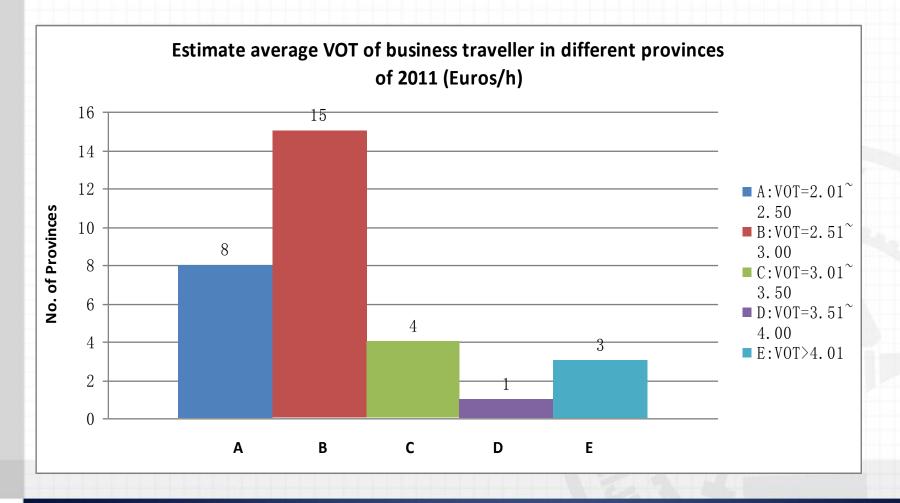
Item	Wuhan- Guangzhou	Beijing-Tianjin	Jinan-Qingdao
Diverted from conventional lines	52%	55.39%	93.61%
Diverted from aircraft	6%	n.r.	n.r.
Generated or shifted from road	42%	44.61%	6.39%
inc. road	n.a	11.09%	n.a
inc. generated	n.a	33.53%	n.a



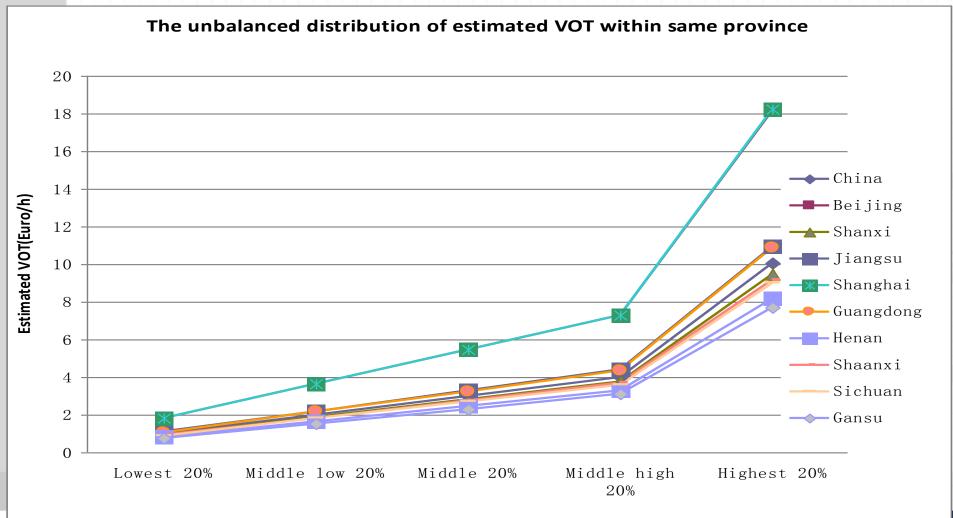
Rail/air share in Wuhan-Guangzhou transport OD pairs

	Before (2009)	After (2010)	Change
Aircraft	7.01%	2.86%	-4.16%
Conventional Train	92.99%	55.92%	-37.06%
HS Train	0.00%	41.22%	41.22%
Total	100.00%	100.00%	

5.1 Change of rail/air market share caused by Beijing-Shanghai HSR


	_ "	Rail	Expected	Expected Market S	hare %			Actual
Airport	Rail distance	journey time to	Impact to air	Before	(2010)	After	(2012)	impact to air
	to Beijing	Beijing	before	Rail	Air	Rail	Air	after
Jinan	406 km	1.63h	-36%	91%	9%	98%	2%	-78%
Xuzhou	692km	2.85h	-67%	93%	7%	98%	2%	-64%
Nanjing	1023km	4.10h	-4%	55%	45%	79%	21%	-53%
Wuxi	1210km	4.90h	-2%	57%	43%	70%	30%	-31%
Shanghai	1318km	5.53h	-2%	34%	66%	43%	57%	-13%

- In China HSR tends to have a market share of about 80% when rail journey times are within 4 hours or travel distance around 1,000km, which is significant higher or longer than those of the EU and Japan.
- This can be explained by the HSR's rather cheaper price and higher frequency when compared with the air and also the heavy airport delay that happened so frequently in recent years.



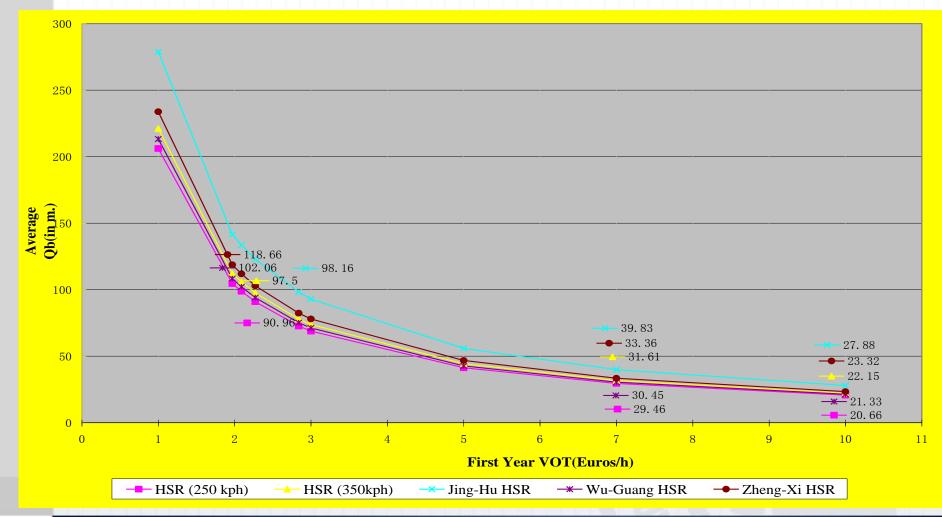
5.2.1 Estimation of VOT in China

5.2.1 The distribution of VOT in China

5.2. 2 Estimation of the time savings per pass.

For a 500 km journey (Euros)	Time savings per trip	Average VOT	Value of time saved per trip
The operational speed of HS train with a max design speed of 250km/h at national average level	0.88	2.27	1.99
The operational speed of HS train with a max design speed of 350km/h at national average level	1.79	2.27	4.05
Beijing-Shanghai HS Line	1.58	2.84	4.49
Wuhan-Guangzhou HS Line	1.68	2.09	3.51
Zhengzhou-Xian HS Line	1.69	1.97	3.34

5.3 The break even traffic to justify the investment of a HSL in terms of time savings


$$B = \sum_{i=1}^{T} \frac{Q_i * \Delta t * VOT_i}{(1+\gamma)^{i-1}} - I$$

$$Q_{i+1} = Q_i * (1 + \alpha_i)$$

$$VOT_{i+1} = VOT_i * (1 + \theta_i)$$

Estimation of breakeven traffic for HSLs in China

5.4 Additional capacity and its benefits

- Many passengers of conventional trains refused to change to the passengers of the HSR with 350 km/h, mainly due to the high level of tariff and its lower axle load limitation prohibits the conventional passenger trains to run on it.
- Accordingly, a large number of conventional trains have to be kept running on the existing lines.
- So it is difficult to free up substantial capacity for freight trains on most of the existing lines.
- For the HSRs in operation, the additional revenue cargo volume that can be actually achieved in recent years is quite low, between one third and one tenth of that expected
- One of the problems is that high speed lines have only been built on some sections, and bottlenecks remain elsewhere on the main freight routes.

5.5 Reduced externalities from other modes

Energy consumption by train and air on a specific corridor in 2010

	Intercity train	HST (1000 km)	Air (900km)
Maximum speed	160	350	700
Seating capacity	1200	600	180
Load factor	90%	50%	81%
KWH per gross ton km	0.016	0.043	n.a
KWH per 100 passenger km	1.63	5.59	n.a
MJ per passenger km		0.61	1.28

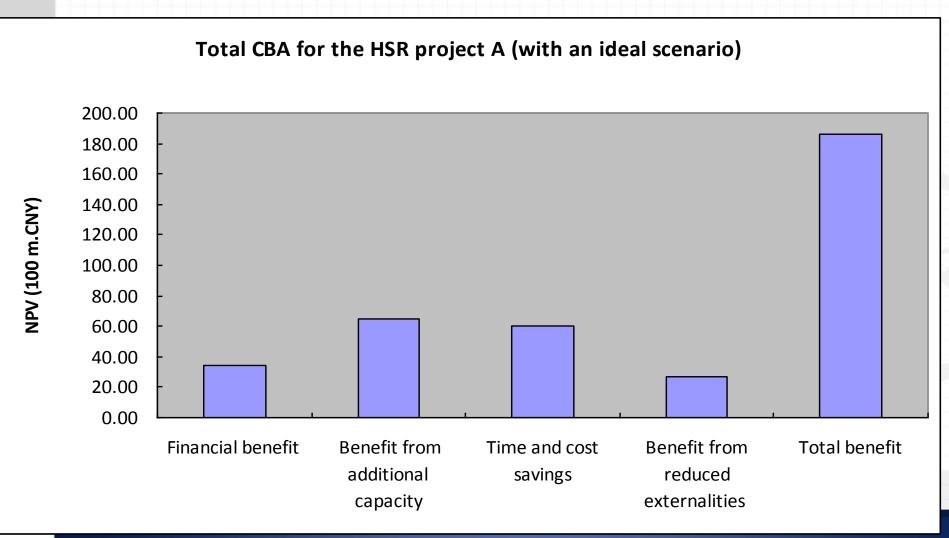
Source: Wu, Cui and etc., 2011

5.5 Reduced externalities from other modes

- Given the composition of the HS traffic mainly from CT and new generation, the energy savings seem to be very limited.
- The introduction of HSR cannot lead to a substantial environmental advantage and where there is only limited diversion from air, it will undoubtedly lead to an increase in energy consumption.
- So the objective to reduce negative externalities will not happen unless HST can raise its load factor substantially and shift huge traffic from the other modes, especially from potential future car traffic.

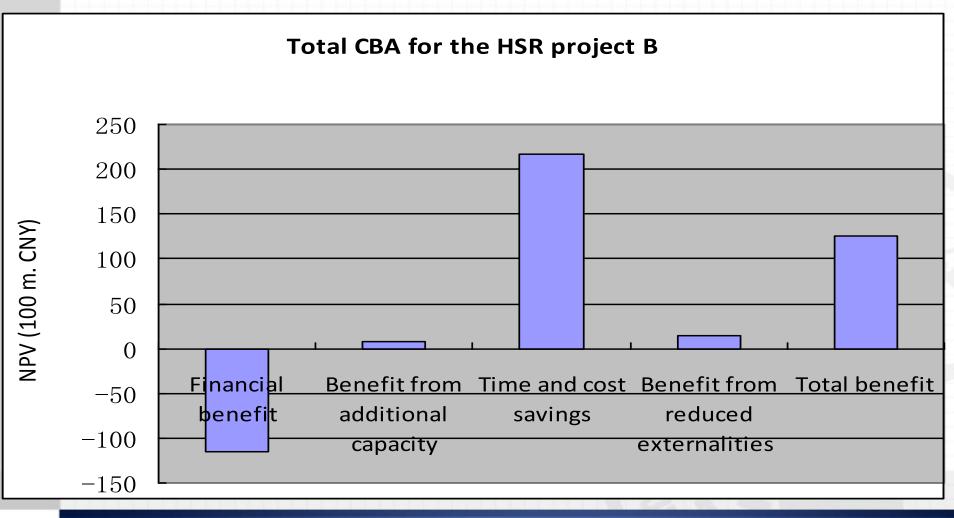
5.6. Wider economic impact

- The wider economic impact of HSR in China could be greater than in the EU.
- Officials from Dezhou city and Xuzhou city claimed that the land price around their stations of Beijing-Shanghai HSR rose more than 20 times after the operation of HSR. Further, as it has happened in the EU, there is also a negative impact of HSR on regional economic development.
- However, it is still difficult to quantify it at this moment not only due to their short time operation, but also because of the difficulty in separating the agglomeration economies induced by HSR from other reasons.

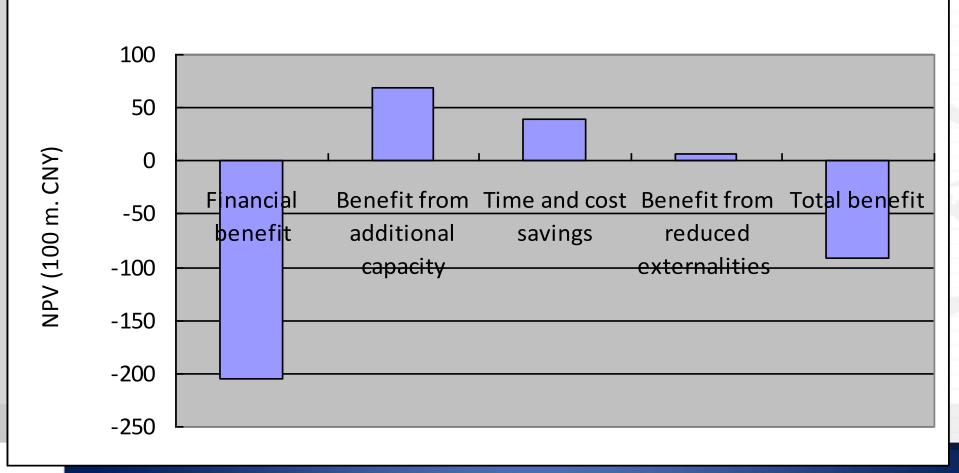

5.7. Some trial ex-post CBA of HSR projects

		Project A	Project B	Project C
	Ex ante	≥6%	≥6%	≥6%
FIRR	Ex post	6.00%	positive, but less than 3%	negative
	Ex ante	≥20%	≥20%	≥20%
EIRR	Ex post	10.90%	10.00%	8.50%

In China the official discount rate for financial evaluation has been 3% since 2006, while that for economic evaluation is 8%. The rail project evaluation period has been 25 years since 2006



5.7 A trial ex-post CBA of a HSR project A


5.7 A trial ex-post CBA of a HSR project B

5.7 A trial ex-post CBA of a HSR project C

Total CBA for the HSR project C

北京交通 經濟管理學院

6. SOME TENTATIVE

CONCLUSIONS

- A comprehensive appraisal should be undertaken for investing in a HSR project.
- The initial financial and economic performance of HSR in China indicates that deployment of HSR throughout the country to high technical standards is unlikely to be justified, esp for most of the HSLs built in the middle and west areas.
- The commercial breakeven traffic density in China for the 350 km/h HSL is about 40-50 million passenger trips per annum, while that for 250 km/h HSL is about 25-30 million. The construction cost and the level of debt funding are the most important variables in determining the breakeven volume.

- For a positive social cost-benefit ratio in China, solely in terms of time savings, it would require of the order of 100m passengers per annum justifying HSR. However, the additional volume of traffic needed to justify will be 28m passengers per annum in the case where a new advanced conventional will otherwise be built, so that it is only the incremental cost of high speed that has to be compared with the value of time savings.
- HSR in China seems to be more successful at competing with air than in the rest of the world.

- The introduction of HSR in China is unlikely to have significant environmental benefits unless load factors can be raised substantially and large volumes of traffic can be shifted from other modes in the future
- There is an urgent need to design and adopt a package of new HSR policies in China, both for improving the operational, financial and economic efficiencies of the existing HSR lines and for re-evaluating the HSR projects that are under construction or still in the planning stage.

- For HSR lines in the western part of China additional significant subsidy from central and regional governments will be needed not only for construction of infrastructure but also for high speed train operations.
- Network effects and evaluation of the wider economic benefits of HSR are important issues to be addressed for the future planning of HSR in China.

Thank you ! थैंक यू !

