

Federal Ministry for the Environment, Nature Conservation and Nuclear Safety

Decarbonising Transport in Emerging Economies (DTEE) - Azerbaijan National passenger model training session

Recalling the context

- The ITF team has worked with the Azerbaijan Ministry of Digital Development and Transport and the Baku Transport Authority to build 3 tools that allow to assess the impact of policy measures on transport demand and related emissions to 2050.
- The 3 tools are MS Excel-based and cover:
 - Passenger transport in Baku
 - Passenger transport in Azerbaijan (excl. Baku) [FOCUS OF THIS PRESENTATION]
 - Freight transport in Azerbaijan
- The tools (incl. training material) are made available to any interested stakeholders

Recalling the context

- The tools should **help policy makers put in place efficient policy measures** to reduce carbon emissions from transport.
- Results may feed national or international policy documents (e.g. national transport plans or updates of Azerbaijan's NDC).
- The tools were developed in the context of the <u>Decarbonising Transport in</u> <u>Emerging Economies project</u> (www.itf-oecd.org/dtee)

2. Model components

Scope Modelling structure Main functions Model Inputs Model components

Purpose of this meeting

Present the passenger modelling tool in detail, explain its structure and how its components interact

Goal of todays meeting:

- Model users are able to understand and use the tool easily
- Model "handlers" are able to update modelling assumptions
- Use this presentation as a manual for future users

This manual should be used together with the model methodology note

The Modeling tool

General information about the model

The model is built in Microsoft Excel (macro enabled workbooks)

A run takes a few seconds with a standard computer

The model estimates passenger transport for Azerbaijan, excluding Baku

The model relies on local sources, such as national statistics. Where local data is unavailable, data from ITF global models or other external sources is used

General information about the model

It is a **strategic modelling tool** allowing to assess the impact of CO2 mitigation measures, including:

- **Infrastructure developments** (e.g. new highways, new rail lines)
- Improvements in existing services (e.g. train line electrification, improved train frequency, improved bus service quality)
- **Other policies** (e.g. car sharing, eco-driving)
- Vehicle technology adoption (e.g. electric vehicle uptake)

Allows the user to develop different policy scenarios to 2050 and assess resulting transport activity, mode shares, and related emissions

1. Introduction

2. Model components

Scope

Modelling structure Main functions Model Inputs Model components

Level of disaggregation

The model differentiates:

- 11 zones
- 4 modes of transport: Car, Rail, Bus, Air
- 5 fuel types (gasoline, diesel, electric, methane, H2)
- 5 years step from 2015 to 2050

Zonal System

Model Zones (11)

Azerbaijan's Economic Regions

- Models were calibrated on these zones
- Policies will have an effect at this level

1. Introduction

2. Model components

Scope

Modelling structure

Main functions Model Inputs Model components

The principle of the 4-steps transport model

From transport activity to CO2 estimates

Main Model Sections

- Introduction
- Data explorer
- Scenario building and key output
- Model Inputs
- > Model components

1. Introduction

2. Model components

Scope

Modelling structure

Main functions

Model Inputs Model components

Before you run the model(!)

Always enable manual calculation of formulas – otherwise each edits triggers a computation of the model.

How? Go to options, formulas, select manual.

		_
General Formulas Proofing Save Language Advanced Customize Ribbon	Change options related to formula calculation, performance, and error handling.	Also enable iterative calculation Set your maximum iterations (5 is added by default)
Add-ins Trust Center	Working with formulas	

Intro sheet

NATIONAL MOBILITY MODEL FOR AZERBAIJAN

Version: 1.0 Last update: 05/11/2021

INTRODUCTION

The National Mobility Model for Azerbaijan is a tool developed by the ITF for the Decarbonising Transport in Emerging Economies project. Its aim is to help stakeholders identify efficient pathways for the mitigation of passenger transport CO2 emissions in the country of Azerbaijan. It allows the users to easily test different policy packages through the building of scenarios. While the tool aims to be as comprehensive as possible in the set of policies and measures which can be tested. the three following elements are of particular interest:

- Enhancement of transport infrastructure

- Policies aimed in shifting intercity travel towards more environmentally friendly modes, such as buses and trains, or encouraging the uptake of shared car trips.

MODEL SCOPE

This model is for the country of Azerbaijan excluding trips taking place within the urban area of the capital, Baku. The country is divided in the 11 economic regions which serve as the zoning level for the model. The model captures aggregate relationships at the zone level. It simulates the overall long-term trends for the country and the evolution of passenger movement during the study period. The outputs are best interpreted at the country level. Relationships between variables are calibrated from observed data, whenever possible, and from existing

TEAM

Project Oversight Model Design and Development Model Development

_			

Elisabeth Windisch, ITF **Dimitrios Papaioannou, ITF** Mallory Trouve, ITF

Go to Data Explorer

Generic information about the model

Data Explorer

	Data Explorer	
Sheet	Variables / description	Link
Scenario building and key out	nuts	
Scenario building	Define scenarios	Link
Visual summary - country	Visualise key mobility and emission outputs for baseline and alternative scenarios for the entire study area	Link
Visual summary - country	Visualise key mobility and emission outputs to baseline and alternative scenarios for the critice study area	Link
Output cummany - country	Summarise key including and emission outputs for baseline and alternative scenarios for a specific zone	Link
Output summary - country	Summarise key outputs by scenario for the element country	Link
Sull model extracto	Summarise key outputs by scenario for the a specific Zone	Link
Full model outputs	Detailed model outputs by OD pair, scenario, and year	LINK
Model Inputs		
Input summary	Summarise key inputs	Link
Model parameters	Groups and summarises model parameters	Link
Model Components		
Trip generation	Trip generation and attraction sheet - Baseline	Link
	Trip generation and attraction sheet - Alternative	Link
Trip distribution	Trip distribution sheet - Baseline	Link
•	Trip distribution sheet - Alternative	Link
Mode choice	Summary sheet	Link
	Computer in the state of the st	Link
Vehicle stock & CO2	Private car stock module and CO2 factors - Baseline	Link
	Private car stock module and CO2 factors - Alternative	Link
	Public transport and taxis stock module and CO2 factors	Link
Other	Load factors	Link

Contains links to the various sheets of the model

Scenario builder

ERBAIJA	Ν ΝΑΤΙΟ	NAL P	ASSEN	GER MOD	EL CON	NTROL P	AGE					<u>Return t</u>	o Data Explorer
	s	ihow indiv	/idual resu	lits for zone:	Zone 7	Upda	ate Zone Outputs						Calculate Model
ancement of	infrastructu	re											
Country wid	le measures												
Rus Service	e Improvem	ente				Car Sharing	/ Load factor increa		Urban			Intercity	
Explanation	Year	Urban	Baseline	Alternative 2025 2025		Explanation	Year implemente Load factor increase	Baseline	Alternative 2030 15%	Year implemented Load factor increase	Baseline	Alternative 2030 10%	
Eco Driving Explanation) (buses) Yearin	nplemented	Baseline	Alternative 2025									
Fuel Pricing	1												
Explanation	-												
	Ŷ	ear 2020 2025 2030 2035 2040 2045 2050	Baseline	Alternative 5% 8% 10% 10% 10%									
OD-specific	es measures												

Explanation

Year	Baseline implemented	From Zone	To Zone	Speed	Cost (\$US)
1					
2					
3					
4					
5					
6					

Yeari	Alternative implemented	From Zone	To Zone	Speed	Cost (\$US)
1	2025	Zone 5	Zone 5	2	10.00\$
2	2030	Zone 3	Zone 7	2	10.00\$
3					
4					
5					
6					

- This sheet is used to define the two scenarios to be tested.
- The pre-agreed upon scenarios (baseline and alternative) are prefilled
- To calculate the results

Scenario builder

	PASSENGER MO	DEL CONTROL	_ PAGE						Return	to Data Explor
Show in	dividual results for zon	e: Zone 7	Update Zone Outputs							Calculate Model
inhancement of infrastructure										
Country wide measures										
Bus Service Improvements		Car Sha	ring / Load factor in	creases	Urban			Ir	ntercity	
Explanation Year Urb implemented Interc	Baseline Alternativ an 2025 ity 2025	e	ion Year implem Load factor inc	Baseline rease	Alternative 2030 15%	Year imp Load factor	Ba emented increase	iseline A	lternative 2030 10%	
Eco Driving (buses) Explanation Year implement Fuel Pricing Explanation Year 20 20 20 20 20 20 20 20 20 20 20 20 20	Baseline Alternativ 20 2025 Baseline Alternativ 20 25 23 6 35 10 40 10 45 10		From	Zones Please	v select	Го				
OD-specific measures	/			a zone						
Ye	Baseline ear implemented From Zor 2 3 4 5 6	e To Cone peec	Cost (\$US)		Year in 1 2 3 4 5 6	Iternative plemented Fr 2025 2 2030 2	om Zone T Zone 5 Zone 3 Z	o Zone Zone 5 Zone 7	Speed 2 2	Cost (\$US) 10.00\$ 10.00\$

 Always use to run the model

Calculate Model

- Input cells (in light blue) have instructions and dropdown menus to select. Error messages will block you from selecting a different value
- Zones are added as: "Zone 1" in all fields where a zone input is required

[Outputs, Results city, results zone, visual outputs city, visual outputs zone]

Results city – aggregated results for the entire country

Key outputs are summarized for the entire country for both scenarios

23

Mobility indi	cators for the entire	country																					
				Baseline									Alterr	ative Scen	ario		Return	to Data Expl	Jata Explorer				
Number of trips	(in millions)	2018	2020	2025	2030	2035	2040	2045	2050	Number of trips	(in millions)	2018	2020	2025	2030	2035	2040	2045	205				
For the e	entire Country	2 0 4 7	2 203	2 550	2 825	3 0 1 9	3 197	3 351	3 466	For the en	tire Country	2 0 4 7	2 203	2 550	2 825	3 0 1 9	3 197	3 351	3 466				
By mode	Car	1 018	1 0 9 5	1 268	1 404	1 501	1 589	1 666	1723	By mode	Car	1 0 1 8	1 095	1 2 1 5	1 345	1 437	1 522	1 596	1 651				
,	Rail	3	3	4	4	5	5	5	5	-,	Rail	3	3	6	7	8	8	8	8				
	Bus	1 0 2 6	1 104	1 278	1 4 1 6	1.514	1 603	1 680	1 737		Bus	1 0 2 6	1 104	1 330	1 473	1 574	1 667	1 747	1 807				
	Air	0	0	0	0	0	0	0	0		Air	0	0	0	0	0	0	0	0				
Mode share by trip	ps									Mode share by trips	3												
By mode	Car	50%	50%	50%	50%	50%	50%	50%	50%	By mode	Car	50%	50%	48%	48%	48%	48%	48%	48				
	Rail	0%	0%	0%	0%	0%	0%	0%	0%		Rail	0%	0%	0%	0%	0%	0%	0%	0				
	Bus	50%	50%	50%	50%	50%	50%	50%	50%		Bus	50%	50%	52%	52%	52%	52%	52%	529				
	Air	0%	0%	0%	0%	0%	0%	0%	0%		Air	0%	0%	0%	0%	0%	0%	0%	0				
РКМ	(in billion)	2018	2020	2025	2030	2035	2040	2045	2050	PKM	(in billion)	2018	2020	2025	2030	2035	2040	2045	205				
	Total	35.28	38.10	44.36	49 17	52.45	55.34	57 72	59.36		Total	35.28	38.10	44.15	48.96	52.24	55.14	57.53	59.18				
By mode	Car	15.82	17.06	19.83	22.01	23.54	24.93	26.12	27.00	By mode	Car	15.82	17.06	18.90	20.95	22.39	23 70	24.83	25.65				
.,	Rail	1.00	1.09	1.27	1.40	1.47	1.52	1.54	1.54	-,	Rail	1.00	1.09	1.03	1.46	1.53	1.59	1.62	1.61				
	Bus	18.40	19.89	23.19	25.70	27.39	28.85	30.02	30.79		Bus	18.40	19.89	24.16	26.50	28.27	29.81	31.06	31.89				
	Air	0.07	0.07	0.06	0.05	0.05	0.04	0.03	0.03		Air	0.07	0.07	0.06	0.05	0.05	0.04	0.03	0.03				
Mode share by PK	(M	2018	2020	2025	2030	2035	2040	2045	2050	Mode share by PKN	1	2018	2020	2025	2030	2035	2040	2045	205				
By mode	Car	45%	45%	45%	45%	45%	45%	45%	45%	By mode	Car	45%	45%	43%	43%	43%	43%	43%	439				
	Rail	3%	3%	3%	3%	3%	3%	3%	3%		Rail	3%	3%	2%	3%	3%	3%	3%	39				
	Bus	52%	52%	52%	52%	52%	52%	52%	52%		Bus	52%	52%	55%	54%	54%	54%	54%	549				
	Air	0%	0%	0%	0%	0%	0%	0%	0%		Air	0%	0%	0%	0%	0%	0%	0%	0				
/KM	(in million)	2018	2020	2025	2030	2035	2040	2045	2050	VKM	(in million)	2018	2020	2025	2030	2035	2040	2045	205				
For the e	antire Country	10 105	10.893	12 653	14 029	14 988	15.856	16 597	17 137	For the en	tire Country	10 105	10 893	12 141	13 441	14 355	15 183	15.887	16 400				
Pu mode	Car	9.487	10 225	11 874	13 165	14 068	14 888	15 589	16 104	By mode	Car	9 487	10 225	11 330	12 551	13 406	14 182	14 845	15 330				
sy mode	Rail	401	4	5	6	6	6	6	6	by mode	Rail	407	4	4	6	6	6	6	6				
	Rus	613	663	773	857	913	962	1 001	1.026		Rus	613	663	805	883	942	994	1.035	1.063				
	Air	1	1	1	1	1	1	1	0		Air	1	1	1	1	1	1	1	0				
CO2	(in Million Tonnes)	2018	2020	2025	2030	2035	2040	2045	2050	CO2	(in Million Tonnes)	2018	2020	2025	2030	2035	2040	2045	205				
For the e	entire Country	2.22	2.41	2.52	2.70	2.82	2.80	2.70	2.63	For the en	tire Country	2.38	2.44	2.65	2.11	2.82	2.83	2.80	2.68				
sy mode	Car	1.80	1.98	1.98	2.11	2.24	2.24	2.17	2.15	By mode	Car	2.00	2.06	2.17	2.27	2.31	2.32	2.28	2.17				
	Rail	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		Kall	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
	Bus	0.41	0.42	0.53	0.59	0.58	0.56	0.53	0.48		Bus	0.36	0.37	0.47	0.49	0.51	0.51	0.51	0.51				
	Air	0.01	U.01	U.01	0.00	U.00	U.00	0.00	U.00		Air	0.01	0.01	U.01	U.00	0.00	U.00	U.00	0.00				

Results zone – aggregated results for a zone

АВ		С	D	Е	F	G	н	1.1	J	к	L M		N	0	Р	Q	R	S	т	U	V V
Zone 5 as Origi	n N	Aobility indicator	rs for zone:	5	Baseline				Update Zone	Outputs	Zone 5 as Orig	gin			Alter	native Scen	ario		Retur	n to Data Exp	plorer
Number of trips		(in thousands)	2018	2020	2025	2030	2035	2040	2045	2050	Number of trips	Total	(in thousands)	2018	2020	2025	2030	2035	2040	2045	2050
By mode		Car Rail Bus Air	221 346 652 247 301 1	237 893 706 265 796 1	813 307 178 1	304 144 877 339 816 1	324 753 908 362 824 1	343 653 922 383 912 1	360 011 919 402 151 1	372 214 900 415 743 1	By mode	i otal	Car Rail Bus Air	469 299 221 346 652 247 301 1	237 893 706 265 796 1	266 622 3 352 312 968 1	294 939 3 703 346 227 0	314 914 3 925 369 680 0	720 524 333 231 4 115 391 177 0	349 082 4 264 409 771 0	360 907 4 358 423 629 0
Mode share by trips											Mode share by trips										
By mode		Car Rail Bus Air	47% 0% 53% 0%	47% 0% 53% 0%	47% 0% 53% 0%	47% 0% 53% 0%	47% 0% 53% 0%	47% 0% 53% 0%	47% 0% 53% 0%	47% 0% 53% 0%	By mode		Car Rail Bus Air	47% 0% 53% 0%	47% 0% 53% 0%	46% 1% 54% 0%	46% 1% 54% 0%	46% 1% 54% 0%	46% 1% 54% 0%	48% 1% 54% 0%	46% 1% 54% 0%
РКМ	otal	(in million)	2018	2020 7 764 76	2025 8 992 73	2030	2035	2040	2045	2050	РКМ	Total	(in million)	2018	2020	2025	2030	2035	2040	2045	2050
By mode	Cia	Car Rail Bus Air	3 531.18 256.03 3 425.88 0.18	3 798.95 277.08 3 688.54 0.19	4 400.02 318.56 4 273.93 0.22	4 875.70 342.90 4 730.68 0.23	5 211.62 354.36 5 048.71 0.24	5 520.13 359.18 5 336.32 0.24	5 787.56 357.09 5 580.68 0.24	5 987.54 348.79 5 758.11 0.24	By mode	1 Oran	Car Rail Bus Air	3 531.18 256.03 3 425.88 0.18	3 798.95 277.08 3 688.54 0.19	4 243.69 355.69 4 373.48 0.22	4 698.88 386.94 4 841.96 0.14	5 021.08 401.52 5 169.39 0.15	5 316.84 409.22 5 465.85 0.15	5 573.07 409.68 5 718.11 0.15	5 764.51 403.31 5 901.69 0.14
Mode share by PKM By mode		Car Rail Bus Air	2018 49% 4% 47% 0%	2020 49% 4% 48% 0%	2025 49% 4% 48% 0%	2030 49% 3% 48% 0%	2035 49% 3% 48% 0%	2040 49% 3% 48% 0%	2045 49% 3% 48% 0%	2050 50% 3% 48% 0%	Mode share by PKM By mode		Car Rail Bus Air	2018 49% 4% 47% 0%	2020 49% 4% 48% 0%	2025 47% 4% 49% 0%	2030 47% 4% 49% 0%	2035 47% 4% 49% 0%	2040 48% 4% 49% 0%	2045 48% 4% 49% 0%	2050 48% 3% 49% 0%
VKM т	otal	(in million)	2018 2 255	2020 2 426	2025 2 810	2030 3 114	2035 3 328	2040 3 525	2045 3 695	2050 3 822	VKM	Total	(in million)	2018 2 255	2020 2 426	2025 2 719	2030 3 011	2035 3 217	2040 3 406	2045 3 570	2050 3 692
By mode		Car Rail Bus Air	2 140 1 114 0	2 302 1 123 0	2 667 1 142 0	2 955 1 158 0	3 159 1 168 0	3 346 1 178 0	3 508 1 186 0	3 629 1 192 0	By mode		Car Rail Bus Air	2 140 1 114 0	2 302 1 123 0	2 572 1 146 0	2 848 2 161 0	3 043 2 172 0	3 222 2 182 0	3 378 2 191 0	3 494 2 197 0
CO2 By mode	otal	(in thousand Tonnes Car Rail Bus Air	2018 492.72 406.54 0.00 86.16 0.02	2020 532.83 444.93 0.00 87.87 0.02	2025 552.83 445.55 0.00 107.26 0.02	2030 593.47 472.62 0.00 120.83 0.02	2035 622.13 501.87 0.00 120.24 0.02	2040 618.22 502.35 0.00 115.85 0.02	2045 596.25 488.45 0.00 107.78 0.02	2050 582.29 484.20 0.00 98.07 0.02	CO2 By mode	Total	(in thousand Tonnes) Car Rail Bus Air	2018 528.24 451.92 0.00 76.30 0.02	2020 541.57 463.74 0.00 77.82 0.02	2025 588.78 493.03 0.00 95.73 0.02	2030 615.76 514.50 0.00 101.25 0.01	2035 628.26 524.46 0.00 103.79 0.01	2040 632.30 526.91 0.00 105.38 0.01	2045 624.54 518.66 0.00 105.86 0.01	2050 600.36 495.45 0.00 104.91 0.01

Outputs are summarized for the a zone.

They are grouped for the zone as origin, as destination, and for intra-zonal trips **Zone is selected in the scenario built sheet**

Zone 5 as Destination				Baseline						Zone 5 as Destinati	ion		Alter	native Scen	ario				
Number of trips	(in thousands)	2018	2020	2025	2030	2035	2040	2045	2050	Number of trips	(in thousands)	2018	2020	2025	2030	2035	2040	2045	2050
	Total	474 551	510 103	589 593	652 183	696 227	736 512	771 258	797 047		Total	474 551	510 103	589 142	651 682	695 694	735 954	770 682	796 463
By mode	Car	222 138	238 795	276 098	305 551	326 328	345 384	361 877	374 181	By mode	Car	222 138	238 795	267 577	296 075	316 182	334 622	350 580	362 482
	Rail	977	1 052	1 199	1 288	1 333	1 356	1 355	1 3 3 3		Rail	977	1 052	3 344	4 120	4 358	4 557	4 709	4 800
	Bus	251 435	270 256	312 295	345 343	368 565	389 771	408 025	421 532		Bus	251 435	270 256	318 220	351 486	375 153	396 774	415 393	429 180
	Air	1	1	1	1	1	1	1	1		Air	1	1	1	1	1	1	1	1
Mode share by trips										Mode share by trips									
By mode	Car	47%	47%	47%	47%	47%	47%	47%	47%	By mode	Car	47%	47%	45%	45%	45%	45%	45%	46%

1. Introduction

2. Model components

Scope

Modelling structure

Main functions

Model Inputs

Model components

Inputs

Main inputs

Generation

Population growth projections		
To change go to:	Baseline	Alternati
GDP annual growth projections		
2018-2020		3.19
2020-2025		3.24
2025-2030		2.93
2030-2035		2.25
2035-2040		2.35
2040-2045		2.41
2045-2050		2.31
Population evolution by age gro	oup throught the study period	
	Baseline	Alternati

6.00 2.00 0.05

Distribution

Value of time in base year [\$US per hour] for intercity trips
Value of time in base year [\$US per hour] for urban trips
Average cost per km in base year [\$US per km]

Mode Choice

Fuel cost per litre in \$US [2018 values]	
	0.53
Average bus speed [km/hour]	
	60.00
Average car fuel economy in ltr gas/km	
	0.10

Based on Azerbaijan's population growth projections by UN DESA

OECD projections for Azerbaijan adapted by ITF

Comes from ITF's global models population evolution model component

ITF estimations based on literature

ITF estimation based on fuel and operating costs

Historical prices

Sources

ITF estimation

IEA Estimates

Return to Data Explore

Has information about inputs that do not come from ITF calculations or the Azerbaijan statistics

26

Model parameters

Model Parameters

Trip Generation	
Variable	Coefficient
A	-0.7958
M	0.0015
Population category 1 (<0.5M)	0.2213
Population category 2 (0.5M - 1M)	0.3246
Population category 3 (1M - 2M)	0.4619
Population category 4 (2M+)	1.8333
Income category 1 (<2000 Manat)	0.3354
Income category 2 (2000 - 2100 Manat)	0.8814
Income category 3 (2100 - 2300 Manat)	0.9173
Income category 4 (2300+ Manat)	0.1640
Age group 0-18	0.1361
Age group 19-30	0.2403
Age group 31-50	0.3103
Age group 51-65	0.1839
Age group 66+	0.0003
Weighted average travel time	-0.0059

Trip Distribution	
	Coefficient
alpha (interzonal trips)	0.010
beta (interzonal trips)	1.698
alpha (intrazonal trips)	1.403
beta (intrazonal trips)	0.010

Mode Choice	
Variable	Coefficient
ASC car	-0.098
ASC rail	-2.960
ASC bus	-1.117
ASC air	0.000
travel time car	-0.083
cost car	-0.133
travel time rail	-0.050
cost rail	-0.113

Return to Data Explorer

Formula: $T_i = \log(I_i * M) * e^{A + pop_cat_i + Inc_cat_i + Age_group_i + \ln(weighted_{tt_i} * w_{tt})}$

Includes coefficients and variables for the various models, as well as the formulas for each one

Formula: $f(Gc_{ij}) = Gc_{ij}^{-a}e^{-\beta Gc_{ij}}$

Utility functions:

ASCcar* one + b_tt_car* tt_car + b_cost_car* cost_car ASCrail* one + b_tt_rail* tt_rail + b_cost_rail* cost_rail ASCbus* one + b_tt_bus* tt_bus + b_cost_bus* cost_bus ASCair* one + b_tt_air* tt_air* tb_cost_air* cost_air

1. Introduction

2. Model components

Scope Modelling structure Main functions

Model Inputs

Model components

Trip generation

[zone_generation_bl, zone_generation_ScA]

Trip Generation & Attraction

The trip generation module estimates the number of trips an average individual will do based on their zones' population, average income, travel time to other zones, and their own age group.

Trip generation and attraction

Trip Generation and Attraction, Baseline

Return to Data Explorer

Nb Zones

11

			Gen	eration							Attractic	n				
Id_Zone	2018	2020	2025	2030	2035	2040	2045	2050	2018	2020	2025	2030	2035	2040	2045	2050
1	491 294	528566.0088	612057.0445	677967.7889	724444.3157	767077.9871	803994.5731	831569	491 294	528 566	612 057	677 968	724 444	767 078	803 995	831 569
2	1 107 578	1194263.236	1388863.699	1542745.172	1651311.341	1751080.433	1837706.752	1902742	1 107 578	1 194 263	1 388 864	1 542 745	1 651 311	1 751 080	1 837 707	1 902 742
3	4 900 647	5239330.598	5992780.166	6584380.413	7000825.786	7380602.894	7706514.928	7945846	4 900 647	5 239 331	5 992 780	6 584 380	7 000 826	7 380 603	7 706 515	7 945 846
4	248 446	267163.628	309072.718	342144.6442	365462.274	386843.1283	405345.3072	419149	248 446	267 164	309 073	342 145	365 462	386 843	405 345	419 149
5	1 285 941	1382258.877	1597822.385	1767876.028	1887761.375	1997650.502	2092693.78	2163532	1 285 941	1 382 259	1 597 822	1 767 876	1 887 761	1 997 651	2 092 694	2 163 532
6	476 108	511818.3698	591748.1154	654807.9336	699265.2837	740019.1233	775271.6691	801553	476 108	511 818	591 748	654 808	699 265	740 019	775 272	801 553
7	120 891	129692.3385	149350.3335	164833.3191	175743.031	185725.7301	194336.9662	200723	120 891	129 692	149 350	164 833	175 743	185 726	194 337	200 723
8	817 799	878925.9197	1015709.152	1123602.173	1199662.384	1269371.859	1329652.219	1374565	817 799	878 926	1 015 709	1 123 602	1 199 662	1 269 372	1 329 652	1 374 565
9	408 618	437066.6982	500390.5695	550134.0877	585155.0933	617108.18	644550.0128	664731	408 618	437 067	500 391	550 134	585 155	617 108	644 550	664 731
10	304 126	327472.4644	379813.022	421158.9735	450319.7395	477087.8849	500290.7984	517656	304 126	327 472	379 813	421 159	450 320	477 088	500 291	517 656
11	305 379	328523.5916	380366.374	421290.7215	450147.771	476617.3024	499535.3431	516651	305 379	328 524	380 366	421 291	450 148	476 617	499 535	516 651
Total	10 466 826	11 225 082	12 917 974	14 250 941	15 190 098	16 049 185	16 789 892	17 338 718								

Id Zone Gen 2018 Gen 2020 Gen 2025 Gen 2030 Gen 2035 Gen 2040 Gen 2045 Gen 2050 Pop 2018 Pop 2020 Pop 2025 Pop 2030 Pop 2035 Pop 2040 Pop 2045 Pop 2050 568000 611287 1 491294.3 1.075864327 1.24580531 1.379962667 1.474562842 1.561341117 1.636482608 1.69260923 2 2006000 2041542 2110740 1107577.9 1.078265707 1.253964832 1.39289996 1.490921212 1.580999837 1.659212233 1.71793061 2262600 3 4900647.3 1.069109904 1.222854811 1.343573608 1.428551233 1.506046527 1.572550402 1.62138711 248445.59 1.075340609 1.244025795 1.377141166 1.470995237 1.557053737 1.631525492 1.68708687 315300 345070 1285940.7 1.074900966 1.242531956 1.374772615 1.468000357 1.553454631 1.627364167 1.68245105 1274800 1341361 1411608 1419374 1.075005505 1.242887163 1.375335812 1.468712485 1.68355336 585565 6 476107.67 1.554310432 1.628353653 544100 1.235416585 254100 267367 120890.67 1.072806884 1.36349087 1.453735322 1.536311582 1.607543187 1.66036997 8 817799.27 1.074745293 1.242003001 1.373933934 1.4669399 1.552180223 1.625890682 1.68080955 927700 944137 976138 9 1.069621128 1.22459187 1.346327793 1.432033722 1.510231619 1.57738925 1.62677772 452800 460823 476442 487307 495552 408618.24 10 304126.12 1.076765346 1.248866835 1.384816854 1.480700648 1.568717243 1.70211003 616800 649005 686118 1.645010965 11 305378.59 1.075791191 1.245556803 1.379568647 1.47406463 1.560742389 1.635790352 1.69183803 675900 9898100 10073472 10414912.2 10652420.75 10832654 10960336 11020638 11010483

Trip Distribution

[OD_distribution_bl, OD_distribution_sca]

Trip Generation

ZoneTrips1....2....3....

$$Trips_{i \to j} \propto \frac{1}{impedance_{i \to j}}$$

Trip Distribution

Trip Distribution across zones

O/D	1	2	3	j
1				
2				
3				
i				Tij

Note: O/D = Origin/Destination

Trip Distribution

4.	- 	B	C	AK B	AL	AM	AN	AO	AP	AQ	AR	AS	BF	BG	BH	BI	BJ	BK	BL	BM	BN	BO	BP	E
-	i rip		tributio	on, Bas	sellne				Return to	Data Explore	ſ													
			actual:									1										INPUT	2017	
	lb																					Gc (\$/h)		
Z	ones	Nb O)																			urban	2.00	2
																						Average		
	11	1	21																			\$/km	0.05	0
																						VOT interc	6.00	6
-					OUTPUTS									INPUTS										
2																								
													Dist	Average travel	Travel time	Travel time	Travel time	Travel time	Travel time	Travel time	Travel time	Distance		
		0.1	Deat ide	OD Flow	OD Flow	Barry 2020	Bau 2025	Bau 2020	Barry 2025	Baux 2040	Bau 2045	Bau 2050	Category	time 2018 all	2020	2025	2030	2035	2040	2045	2050	[km]	Cost [\$]	c_:
2 1	0_01	1	12 Dest_102	475 3	54 485 77	'6 1.0754	1.2443	1.3774	1.4712	1.557	1.6317 3 1.6317	1.6873		modes [min] 8.2	8.2	8.2	8.2	8.2	8.2	8.2	8.2	8.9	0.4	
3 2	2	1	2	7	00 1 27	3 1.1107	1.3671	1.5692	1.7059	1.824	1.9183	1.9779	260	198.0	198.0	198.0	198.0	198.0	198.0	198.0	198.0	269.0	13.5	
1 3		1	3	10 6	69 69	1.1724	1.6506	2.1333	2.5357	2.973	3.4308	3.8646	30	40.5	40.5	40.5	40.5	40.5	40.5	40.5	40.5	35.1	1.8	
5 4		1	4	7	00 67	7 1.1347	1.4778	1.7896	2.0296	2.271	5 2.5047	2.7060	120	95.9	95.9	95.9	95.9	95.9	95.9	95.9	95.9 278 7	120.0	6.0 18.8	
i e		1	6	11	67 67	1 1.1198	1.4081	1.6483	1.8193	3 1.977	1 2.1131	2.2134	180	195.3	195.3	195.3	195.3	195.3	195.3	195.3	195.3	183.0	9.2	
3 7		1	7		15 14	3 1.0432	1.0982	1.0966	1.0718	1.026	0.9628	0.8896	480	459.5	459.5	459.5	459.5	459.5	459.5	459.5	459.5	486.0	24.3	
8 (1	8	7	00 56	6 1.1155	1.3870	1.6048	1.7542	1.886	2 1.9930	2.0643	260	181.6	181.6	181.6	181.6	181.6	181.6	181.6	181.6	261.0	13.1	
) 9		1	9	1	17 8	10017 10017	0.9268	0.8245	0.7361	1 0.640	3 0.5439	0.4566	700	608.0	608.0	608.0	608.0	608.0 263.1	608.0	608.0	608.0	705.0	35.3	
2 1	1	- 1	11	5	84 31	5 1.0723	1.2083	1.2816	1.3116	1.317	3 1.2983	1.2581	400	333.8	333.8	333.8	333.8	333.8	333.8	333.8	333.8	400.0	20.0	
3 1	2	2	1	17	<mark>'56</mark> 84	1.0982	1.3078	1.4510	1.5337	1.590	1.6188	1.6162	270	204.2	204.2	204.2	204.2	204.2	204.2	204.2	204.2	272.0	13.6	
1	3	2	2	1 087 8	84 1 094 79	1 1.0778	1.2522	1.3900	1.4872	1.576	3 1.6541	1.7124	20	19.3	19.3	19.3	19.3	19.3	19.3	19.3	19.3	20.9	1.0	
	4	2	3	41	77 74	0 1.1150	1.3783	1.5794	1,7097	7 1.816	5 1.8935	0 1.9334	250	185.0	185.0	185.0	185.0	185.0	185.0	185.0	185.0	259.0	13.0	
i i	6	2	5	48	92 3 09	1.1372	1.4801	1.7799	2.0011	2.213	3 2.4050	2.5567	150	121.7	121.7	121.7	121.7	121.7	121.7	121.7	121.7	152.0	7.6	
3 1	7	2	6		78 61	6 1.0540	1.1334	1.1486	1.1336	1.095	3 1.0369	0.9662	440	376.6	376.6	376.6	376.6	376.6	376.6	376.6	376.6	448.0	22.4	
1	8	2	7		47 77	3 1.0987	1.3155	1.4721	1.5685	1.641	1.6866	1.6995	220	280.5	280.5	280.5	280.5	280.5	280.5	280.5	280.5	227.0	11.4	
	9	2	9	12	16 11/	1.1056	0.9963	1.5114	0.8537	7 0.767	1.7540	0.5835	280	521.5	200.0	200.0	200.0	200.0	200.0	200.0	200.0	280.0	14.0	
2 2	1	2	10	27	60 2.09	3 1.1375	1.4857	1.7976	2.0339	2.267	2.4867	2.6697	130	101.1	101.1	101.1	101.1	101.1	101.1	101.1	101.1	137.0	6.9	
3 2	2	2	11	3 2	61 170	6 1.1292	1.4470	1.7196	1.9180	2.105	5 2.2720	2.4006	140	154.8	154.8	154.8	154.8	154.8	154.8	154.8	154.8	142.0	7.1	
1 2	3	3	1	58	192 6 83	1.1407	1.5079	1.8518	2.1230	2.402	7 2.6794	2.9258	30	40.9	40.9	40.9	40.9	40.9	40.9	40.9	40.9	34.9	1.7	
2 2	5	3	2	4 856 1	58 4 853 97	10903	1.3120	1.4/40	1.001	1.009	3 1.7344	1.6194	200	61	104.0	104.0	104.0	104.0	104.0	104.0	104.0	200.0	0.3	
1 2	6	3	4	7	44 540	8 1.1150	1.3960	1.6386	1.8183	1.992	2.1527	2.2834	120	98.8	98.8	98.8	98.8	98.8	98.8	98.8	98.8	123.0	6.2	
3 2	7	3	5	13 1	43 5.47	8 1.0735	1.2165	1.2997	1.3389	1.355	1.3470	1.3168	360	265.3	265.3	265.3	265.3	265.3	265.3	265.3	265.3	361.0	18.1	
2 2	8	3	6	86	42 481	0 1.0929	1.2982	1.4500	1.5471	1.625	5 1.6804	1.7068	210	221.6	221.6	221.6	221.6	221.6	221.6	221.6	221.6	215.0	10.8	
1 3	0	3	8	2.8	33 4.84	3 1.0296	1.0539	1.0306	1.6259	1.725	7 1.8020	1.8473	240	446.1 168.2	446.1	446.1	446.1	446.1	446.1	446.1	446.1	247.0	12.4	
2 3	1	3	9	2	85 75	0.9824	0.8887	0.7737	0.6809	0.584	4 0.4904	0.4072	690	596.0	596.0	596.0	596.0	596.0	596.0	596.0	596.0	691.0	34.6	
3 3	2	3	10	57	20 3 69	9 1.0737	1.2210	1.3127	1.3609	1.388	3 1.3928	1.3750	340	244.7	244.7	244.7	244.7	244.7	244.7	244.7	244.7	346.0	17.3	
1 3	3	3	11	14	65 2 69	08 1.0584	1.1597	1.2045	1.2157	1.205	2 1.1738	1.1258	380	320.4	320.4	320.4	320.4	320.4	320.4	320.4	320.4	386.0	19.3	
2 3	5	4	2	4	47 35 188 1.27	70 1.1429 79 1.1476	1.5056	1.8286	2.0702	2.305	2.5205	2.6955	120	95.5	98.5 105.8	98.5 105.8	98.5 105.8	98.5 105.8	98.5 105.8	98.5 105.8	98.5 105.8	122.0	6.1	
1 3	6	4	3	8	94 32	1.1556	1.5637	1.9427	2.2360	2.531	1 2.8133	3.0534	120	95.8	95.8	95.8	95.8	95.8	95.8	95.8	95.8	122.0	6.1	
3 3	7	4	4	245 7	48 244 20	1.0744	1.2405	1.3713	1.4633	1.547	1.6205	1.6748	10	0 10.1	10.1	10.1	10.1	10.1	10.1	10.1	10.1	10.9	0.5	

Trip Distribution - recalibration

For a change in OD flows, the distribution must be recalibrated using the solver (default add-in in Microsoft Excel, in the data tab). Set solver parameters like the picture below and run it.

AW AX AY AZ BA BB BC BD	BE BF BG BH BI BJ BK	K BL BM B	BN BC	BP	BQ B	R BS	BT	BU	BV	BW	BX BY	BZ
											$f(Gc) = Gc^{-\alpha}$	$e^{-\beta Gc}$
or calibration	Solver Parameters		x	2047	2020	2005 202				0050	less des services	
				or 2017	2020	2025 203	0 2035	5 2040	0 2045	2050	Impedance para	ameters:
ig of errors (without intern Log of errors (without 0				h)								
a u nows) nows)	Set Objective: \$AX\$9			2.00	2.13 2.0	45 2.74	2.97	3.20	3.45	3.68	aipna	Deta
				'n								
4.92 5.08	To: <u>Max</u> Min <u>Value Of:</u>	0		0.05	0.05 0.0	06 0.07	0.07	0.08	0.09	0.09	0.010	1.698
oindre Carrés					0.30 7.5	0.23	0.01	8.01	10.34	11.05	intera	Lonai
297 517 181 509 036 642	By Changing Variable Cells:											
83 465 119 049 119 049 Initial Mode Share	\$RY\$6-\$CR\$6		1								Generalised	
art hors flux internes et ecarts en val ecarts en	401404040		1.471	ce Cost [\$]	c_2020 c_2	025 c_2030	c_2035	c_2040	c_2045	c_2050	Cost	GC_2020 G
x nuls Ecart hors flux nuls abs % Car PT Soft	Subject to the Constraints										Gc [min]	-
0 10422 10422 2% 75% 5% 20 573 573 573 82% 75% 5% 20	s <u>u</u> oject to the constraints.			8.9 0.4	0.5	0.5 0.0	6 0.7 5 20.0	0.7	7 0.8	24.7	0.7	0.8
9 960 9960 9 960 -94% 75% 5% 20	\$BZ\$6 >= 0.00001	<u>^</u> <u>A</u> dd		5.1 1.8	1.9	2.2 2.	4 2.6	2.8	8 3.0	3.2	5.8	6.2
24 24 24 -3% 75% 5% 20	\$CB\$6 >= 0.00001			0.0 6.0	6.4	7.4 8.3	2 8.9	9.6	6 10.3	11.0	15.6	16.6
178 178 178 -22% 75% 5% 20 499 499 496 42%		Change		5.0 18.8	19.9	23.0 25.	7 27.8	3 30.0	0 32.3	34.5	46.6	49.6
128 128 128 846% 75% 5% 20				6.0 24.3	25.9	29.8 33.	3 36.1	1 38.9	9 41.9	44.7	70.2	74.7
135 135 135 -19% 75% 5% 20		Delete		1.0 13.1	13.9	16.0 17.	9 19.4	4 20.9	9 22.5	24.0	31.2	33.2
29 29 29 -25% 75% 5% 20		_		5.0 35.3	37.5	43.2 48.	4 52.3	3 56.5	5 60.7	64.8	96.1	102.2
269 269 269 -46% 75% 5% 20				0.0 20.0	21.3	24.5 27.	4 29.7	7 32.0	0 34.5	36.8	53.4	56.8
916 916 916 -52% 75% 5% 20		<u>R</u> eset All		2.0 13.6	14.5	16.7 18.	7 20.2	2 21.8	8 23.4	25.0	34.0	36.2
0 6906 6906 1% 75% 5% 20				0.9 1.0	1.1	1.3 1.4	4 1.5	5 1.7	7 1.8	1.9	1.7	1.8
450 450 45% 75% 5% 20		<u>L</u> oad/Save		8.0 6.4	6.8	7.8 8.	8 9.5	5 10.3	3 11.0	11.8	17.2	18.3
1794 1794 1794 -37% 75% 5% 20	Make Unconstrained Variables Non-Negative			2.0 7.6	8.1	9.3 10.	4 11.3	3 12.2	2 13.1	14.0	19.8	21.0
539 539 539 693% 75% 5% 20	E mage onconstrained variables from negative			8.0 22.4	23.8	27.5 30.	7 33.3	3 35.9	9 38.6	41.2	60.1	63.9
726 726 726 1557% 75% 5% 20 80 80 80 -6% 75% 5% 20	Sglect a Solving GRG Nonlinear	 Options 		0.0 11.4	12.1	13.9 15.0	5 16.5 2 20.8	9 18.2 3 22.4	2 19.6 4 24.1	20.9	39.4	41.9
278 278 278 1791% 75% 5% 20	Method:			0.0 30.0	31.9	36.8 41.	2 44.5	48.1	1 51.7	55.1	82.1	87.4
666 666 666 -24% 75% 5% 20				7.0 6.9	7.3	8.4 9.	4 10.2	2 11.0	0 11.8	12.6	17.0	18.0
1 555 1 555 -48% 75% 5% 20 938 938 918 16% 75% 5% 20	Solving Method			4.9 1.7	7.6	8.7 9.	7 10.5 4 2.6	5 11.4	4 12.2 8 3.0	13.1	22.6	24.0
6 095 6095 6 095 126% 75% 5% 20	Select the GRG Nonlinear engine for Solver Problems that are smooth no	onlinear Select the LP Simplex engine	for	5.0 12.8	13.6	15.6 17.	5 18.9	20.4	4 22.0	23.4	31.2	33.2
0 2180 2180 0% 75% 5% 20	linear Solver Problems, and select the Evolutionary engine for Solver problems	blems that are non-smooth.		6.6 0.3	0.4	0.4 0.	5 0.5	5 0.5	5 0.6	0.6	0.5	0.6
4 bb4 4664 4 664 627% 75% 5% 20 7 665 7665 7665 5660 75%	, and a solution pro-			3.0 6.2	6.5	7.5 8.	4 9.1 8 26.8	1 9.9	9 10.6	11.3	16.0	17.1
3 832 3832 3 832 -44% 75% 5% 20				5.0 10.8	11.4	13.2 14.	8 16.0	0 17.2	2 18.5	19.8	32.9	35.0
938 938 938 329% 75% 5% 20				2.0 23.6	25.1	28.9 32.	4 35.0	37.8	8 40.7	43.4	68.2	72.6
2 020 2020 2 020 71% 75% 5% 20	Holo	Solvo Close		7.0 12.4	13.1	15.1 16.	9 18.3	3 19.8	8 21.3	22.7	29.2	31.0
2 021 2 021 2 021 -35% 75% 5% 20	Trib	2011C CI <u>O</u> Se		6.0 17.3	18.4	21.2 23.	- 51.3 7 25.7	7 27.7	7 29.8	31.8	94.2	44.4
1 233 1 233 1 233 84% 75% 5% 20				6.0 19.3	20.5	23.7 26.	5 28.7	7 30.9	9 33.2	35.5	51.3	54.6
51 51 51 -11% 75% 5% 20	120 98.5 98.5 98.5 98.5	98.5 98.5 98.5	98.5 1	2.0 6.1	6.5	7.5 8.4	4 9.1	1 9.8	8 10.5	11.2	16.0	17.0
568 568 568 568 568 20 75% 5% 20	120 105.8 105.8 105.8 105.8 120 95.8 95.8 95.8 95.8	105.8 105.8 105.8 95.8 95.8 95.8	95.8 1	29.0 6.5	6.5	7.9 8.	9.6 4 9.1	5 10.3 1 9.8	3 11.1 8 10.5	11.9	17.0	18.1
0 1543 1543 -1% 75% 5% 20	10 10.1 10.1 10.1 10.1	10.1 10.1 10.1	10.1	0.9 0.5	0.6	0.7 0.	7 0.8	3 0.9	9 0.9	1.0	0.9	0.9
548 548 548 613% 75% 5% 20	230 189.0 189.0 189.0 189.0	189.0 189.0 189.0	189.0 2	33.0 11.7	12.4	14.3 16.	0 17.3	3 18.7	7 20.1	21.4	30.5	32.5

[Mode_choice, Mode_choice1]

Trip Generation

Trip Distribution

Mode Choice

Mode Choice

Note: PT = Public Transport

Mode choice1 – utility estimation for all modes

					+	+		+				
A	В	С	D	E	U	AK	BA	BQ	BR	BS	вт	В
Mod	e Cho	ice										
				2018				Utility para	meters:			
								Linear coe	fficient per	variable pe	r mode	
Return t	o Data Exp	lorer							Car	Rail	Bus	Air
								Constants	-0.09836	-2.960057	-1.117	
								Cost	-0.13301	-0.113114	-0.04232	-0.2
Zones	Nb OD							Time	-0.08325	-0.049515	-0.01231	-0.1
11	121											
		Leve	l of service	Litility	Cost	Time	consts					
		Leve	Scenario	Current	Current	Current	Current					
CAR			Year	2018	2018	2018	2018					
ID OD	Ori idz	Dest idz	O D	Uti_Cur_2 018	Cos_Cur_ 2018	Tim_Cur_ 2018	con_Cur_ 2018					
1	1	1	1 1	-0.837	0.4	8.2	-0.1					
2	1	2	1_2	-17.974	10.5	198.0	-0.1					
3	1	3	1_3	-3.759	2.1	40.5	-0.1					
4	1	4	1_4	-8.760	5.1	95.9	-0.1					
5	1	5	1_5	-25.261	14.8	278.7	-0.1					
6	1	6	1_6	-17.730	10.3	195.3	-0.1					
7	1	7	1_7	-41.587	24.4	459.5	-0.1					
8	1	8	1_8	-16.494	9.6	181.6	-0.1					
9	1	9	1_9	-55.002	32.2	608.0	-0.1					
10	1	10	1_10	-23.858	13.9	263.1	-0.1					
11	1	11	1_11	-30.238	17.7	333.8	-0.1					
12	2	1	2_1	-18.533	10.8	204.2	-0.1					
13	2	2	2_2	-1.838	1.0	19.3	-0.1					
14	2	3	2_3	-16.801	9.8	185.0	-0.1					
15	2	4	2_4	-9.855	5.7	108.1	-0.1					
16	2	5	2_5	-11.084	6.4	121.7	-0.1					
17	2	6	2_6	-34.109	20.0	376.6	-0.1					
18	2	7	2_1	-25.425	14.9	280.5	-0.1					
19	2	8	2_8	-18.162	10.6	200.0	-0.1					
20	2	9	2_9	-47.188	27.6	521.5	-0.1					
21	2	10	2_10	-9.226	5.4	101.1	-0.1					
22	2	11	2_11	-14.076	8.2	154.8	-0.1					
23	3	1	3_1	-3.790	2.2	40.9	-0.1					

Click on (+) to see other years

Computes utility for each mode for all the years

Mode choice – all mode summary

+

A B C D E F

Click on (+) to see other years

+

eturn to Data Explorer

e offset	ID_OD	Ori_idz	Dest_idz	O_D	P_M1_Ref_2017	P_M2_Ref_2017	P_M3_Ref_2017	P_M4_Ref_2017
0	1	1	1	1_1	0.59	0.00	0.41	0.00
1	2	1	2	1_2	0.03	0.00	0.97	0.00
2	3	1	3	1_3	0.45	0.02	0.53	0.00
3	4	1	4	1_4	0.82	0.00	0.18	0.00
4	5	1	5	1_5	0.00	0.00	1.00	0.00
5	6	1	6	1_6	0.00	0.00	0.99	0.00
6	7	1	7	1_7	1.00	0.00	0.00	0.00
7	8	1	8	1_8	0.09	0.00	0.91	0.00
8	9	1	9	1_9	0.00	0.00	1.00	0.00
9	10	1	10	1_10	0.00	0.00	1.00	0.00
10	11	1	11	1_11	0.00	0.00	1.00	0.00
11	12	2	1	2_1	0.02	0.00	0.98	0.00
12	13	2	2	2_2	0.38	0.00	0.62	0.00
13	14	2	3	2_3	0.04	0.36	0.60	0.00
14	15	2	4	2_4	0.66	0.00	0.34	0.00
15	16	2	5	2_5	0.51	0.02	0.47	0.00
16	17	2	6	2_6	1.00	0.00	0.00	0.00
17	18	2	7	2_7	1.00	0.00	0.00	0.00
18	19	2	8	2_8	0.03	0.00	0.97	0.00
19	20	2	9	2_9	1.00	0.00	0.00	0.00
20	21	2	10	2_10	0.81	0.01	0.18	0.00
21	22	2	11	2_11	0.04	0.00	0.96	0.00
22	23	3	1	3_1	0.44	0.02	0.54	0.00
23	24	3	2	3_2	0.04	0.33	0.63	0.00
24	25	3	3	3_3	0.63	0.00	0.37	0.00
25	26	3	4	3_4	0.79	0.00	0.21	0.00
26	27	3	5	3_5	0.00	0.20	0.80	0.00
27	28	3	6	3_6	0.00	0.01	0.99	0.00
28	29	3	7	3_7	1.00	0.00	0.00	0.00

Computes probability of choosing each mode for each OD pair

Load factors[load factors]

Load factors coming from input sheet and changing based on policies

Load Factors

Return to Data Explorer

Data source: IEA Mobility Model (MoMo)	Reference	ScA	ScA	ScA	ScA	ScA	ScA	Sci	A Sc/	A							
year	2017	2020	2025	2030	2035	2040	204	5 205	0	2017	2020	2025	2030	2035	2040	2045	2050
PV_intercity	2.5	5 2.5	5 2.5	2.5	2.5	2.5	2.5	5 2.	5	2.5	2.5	2.5	2.875	2.875	2.875	2.875	2.875
PV	1.65	5 1.65	5 1.65	1.65	1.65	1.65	1.6	5 1.6	5	1.65	1.65	1.65	1.90	1.90	1.90	1.90	1.90
Bus	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.0	٥″	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00
rail	250.18	3 250.18	3 250.18	250.18	250.18	250.18	250.18	3 250.1	8 2	250.18	250.18	250.18	250.18	250.18	250.18	250.18	250.18
Air	60.00	60.00	60.00	60.00	60.00	60.00	60.00	60.0	0	60.00	60.00	60.00	60.00	60.00	60.00	60.00	60.00

Vehicle stock model & CO2 estimation

[pc_stock_model_bl, pc_stock_model_sca, PT_stocks_emissions]

Car vehicle stock

The two sheets (one for Baseline and one for Alternative) have multiple elements each:

- Total stock by vehicle age (also by fuel type)
- CO2 per VKM (also by fuel type and age)
- Survival curve
- Sales shares based on user input

Total stock by vehicle age

A	B	С	D	E	F	G	н		J
Private vehicle stock	- Baseline	9 I	Return to Data Explorer						
Total stock by Vehicle age									
Vehicle age		2018	2020	2025	2030	2035	2040	2045	2050
0	5	41 178	234 617	217 335	194 075	179 712	204 280	226 852	230 950
5	10	115 159	40 972	233 443	216 247	193 104	178 813	203 257	225 717
10	15	114 914	111 488	39 666	226 002	209 354	186 949	173 113	196 779
15	20	114 914	101 535	98 509	35 048	199 691	184 981	165 184	152 959
20	25	84 270	78 227	69 120	67 059	23 859	135 938	125 925	112 448
25	50	194 273	51 970	38 347	33 299	32 005	12 941	60 672	59 956
		664 708	618 810	696 419	771 731	837 725	903 902	955 004	978 809
Total mileage old vehicles		9 586 205 552	5 645 091 536	7 673 353 532	9 460 243 704	10 672 760 305	11 023 923 554	11 295 043 738	11 745 583 799
Required mileage		9 586 210 031	10 337 435 779	12 020 055 031	13 341 751 545	14 267 005 140	15 109 519 498	15 832 085 720	16 364 584 754
Difference to be covered by new vehicles		4 479	4 692 344 243	4 346 701 499	3 881 507 841	3 594 244 834	4 085 595 944	4 537 041 982	4 619 000 955
Total mileage all vehicles		9 586 210 031	10 337 435 779	12 020 055 031	13 341 751 545	14 267 005 140	15 109 519 498	15 832 085 720	16 364 584 754
Check				0	0	0	0	0	
Total fleet		664 708	618 810	696 419	771 731	837 725	903 902	955 004	978 809
Average annual vkm by ac	a aroup								
,	Age	Annual km	Fleet average	Target resulting by VK	M/total fleet				
0	5	20000	14421.68		14421.68				
5	10	18342							
10	15	16800							
15	20	15000		2					
20	25	12500		4					
25	50	10000							
Total stock by fuel to	(10.0								
Total stock by fuel ty	pe	2018	2020	2025	2030	2035	2040	2045	2050
	Total stock	664 708	618 810	696 419	771 731	837 725	903 902	955 004	978 809
	Gasoline	622 442	570 012	637 123	697 903	747 324	794 570	820 386	806 326
	Gasoline Hybrid	0	0	4 752	12 285	23 921	40 645	60 937	92 905
	Diesel	19 873	23 429	29 785	35 569	37 978	37 510	38 544	37 628
	Diesel Hybrid	0	0	263	681	1 207	1 994	3 092	4 686
2	CNG/LPG	22 394	25 369	24 052	24 252	24 422	23 034	21 058	18 018
3	Hydrogen	0	0	0	0	50	163	389	797
	Hydrogen Hybrid	0	0	0	0	0	0	0	0
	Electric	0	0	445	1 040	2 873	6 150	10 987	19 246
		2018	2020	2025	2030	2035	2040	2045	2050
	Total stock	100%	100%	100%	100%	100%	100%	100%	100
	Gasoline	94%	92%	91%	90%	89%	88%	86%	80
	Gasoline Hybrid	0%	0%	1%	2%	3%	4%	6%	c

- 1. Stock by vehicle age
- Average distance by vehicle in each age category [the two numbers must be equal]
- Vehicle stock decomposition by fuel type and age (further down on sheet)

Co2 per VKM and survival curve

- 1. CO2 per VKM
- Computation for CO2 per VKM using IEA CO2 per VKM by fuel type and age (further down)
- 3. Survival curve

New vehicle sales

AU	Av	Aw	~~	AT	AL	BA	BB	BC	BU	BE	Br	BG	BH	BI	BJ	BK	1 ltr gas -
Private car sales ta	rgets																
Sales shares																	
Derived from below (ur	1975	1980	1985	1990	1995	2000	2005	2010	2015	2020	2025	2030	2035	2040	2045	2050	
All	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	
Gasoline	100%	100%	100%	99%	96%	88%	93%	95.7%	81.9%	91.6%	90.0%	88.6%	86.5%	84.0%	81.4%	73.8%	
Gasoline-hybrid	0%	0%	0%	0%	0%	0%	0%	0.0%	0.0%	0.0%	2.2%	3.9%	6.6%	8.6%	10.1%	16.6%	
Diesel	0%	0%	0%	1%	3%	3%	2%	1.4%	13.7%	4.9%	4.5%	4.4%	3.6%	3.6%	4.0%	3.4%	
Diesel-hybrid	0%	0%	0%	0%	0%	0%	0%	0.0%	0.0%	0.0%	0.1%	0.2%	0.3%	0.4%	0.5%	0.8%	
LPG/CNG	0%	0%	0%	0%	1%	9%	5%	2.9%	4.3%	3.5%	3.0%	2.6%	2.0%	1.7%	1.6%	1.3%	
Hydrogen	0%	0%	0%	0%	0%	0%	0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.1%	0.1%	0.2%	
Hydrogen-hybrid	0%	0%	0%	0%	0%	0%	0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	
Electric	0%	0%	0%	0%	0%	0%	0%	0.0%	0.0%	0.0%	0.2%	0.3%	1.0%	1.6%	2.2%	3.8%	
NPS	•		• / •		• / •	• / •	• / •	0.070	0.070			0.070				01070	
New vehicle average	on-road fu	el consum	ntion (LGE	(100km)													
Directly from Momo	1975	1980	1985	1990	1995	2000	2005	2010	2015	2020	2025	2030	2035	2040	2045	2050	
NPS	12.9	11.3	9.2	8.4	8.4	9.5	8.8	8.4	8.0	83	7.2	6.9	6.8	6.5	6.0	5.7	
SDS	12.0	11.3	0.2	8.4	8.4	0.5	9.9	8.4	8.0	8.3	7.0	6.1	4.2	3.4	2.0	2.5	
303	12.9	11.5	3.2	0.4	0.4	9.3	0.0	0.4	8.0	6.3	7.0	0.1	4.2	3.4	2.9	2.3	
New vehicle average	on-road fu	el consum	ntion /I CE	(100km)													
NDS	un-roau iu	ei consun	ipuon (LGE	TOOKIII)													
Creation	42.0	44.0	0.2	0.4	0.4	0.5	0.0		0.0	0.4	7.0	7.0	7.4	6.7	62	6.2	
Gasoline	12.9	11.5	9.2	0.4	0.4	9.5	0.0	0.4	0.3	0.4	1.5	7.0	7.1	0.7	0.3	0.2	
Gasoline-hybrid	9.3	8.1	6.6	6.1	6.1	6.8	6.3	6.1	5.9	6.5	5.6	5.5	5.7	5.4	5.1	5.1	
Diesel	11.5	10.0	8.0	7.3	7.3	1.1	1.2	6.7	6.1	1.2	6.0	5.9	5.9	5.7	5.5	5.4	
Diesel-hybrid	8.6	7.5	6.1	5.6	5.6	5.8	5.1	4.9	4.8	6.5	4.7	4,7	4.8	4.8	4.7	4.8	
LPG/CNG	13.6	14.7	11.9	11.0	8.9	10.0	9.3	8.5	8.0	8.2	7.3	7.0	6.9	6.6	6.2	6.1	
Hydrogen																	
Hydrogen-hybrid					•		-	-		-		•			-	-	
Electric																	
SDS																	
Gasoline	12.9	11.3	9.2	8.4	8.4	9.5	8.8	8.4	8.3	8.4	7.2	6.8	6.9	6.1	6.0	6.0	
Gasoline-hybrid	9.3	8.1	6.6	6.1	6.1	6.8	6.3	6.1	5.9	6.5	5.5	5.4	5.6	5.0	4.9	5.1	
Diesel	11.5	10.0	8.0	7.3	7.3	7.7	7.2	6.7	6.1	7.2	6.0	5.8	5.8	5.4	5.3	5.4	
Diesel-hybrid	8.6	7.5	6.1	5.6	5.6	5.8	5.1	4.9	4.8	6.5	4.7	4.7	4.8	4.8	4.7	4.8	
L PG/CNG	13.6	14.7	11.9	11.0	8.9	10.0	93	85	8.0	8.2	7.1	6.8	6.7	5.9	5.8	5.9	
Hydrogen	13.0	14.7	11.9	11.0	0.9	10.0	9.3	8.5	3.0	0.2	/.1	0.8	0.7	3.9	3.8	5.9	
Hydrogen-hybrid																	
Electric																	
New vehicle CO2 Emi	ssions (tar	nk-to-whee	I, TTW) [gC	02e/km]													
Directly from Momo	1975	1980	1985	1990	1995	2000	2005	2010	2015	2020	2025	2030	2035	2040	2045	2050	
NPS	299.7428	261.901	212.8586	195.7308	194.9224	220.3266	203.9701	195.1514	185.0332	193.2472	167.0786	159.9393	158.8926	150.1557	139.253	133.4312	
SDS	299.7428	261.901	212.8586	195.7308	194.9224	220.3266	203.9701	195.1514	185.0332	193.2472	162.3208	141.6092	97.00163	79.31052	68.06439	58.0774	
Gasoline	299.8338	261.8232	212.8101	195.9008	195.6482	220.6188	204.1443	195.6637	192.3516	194.6815	169.5964	162.9957	163.6594	156.0272	145.7526	143.4597	
Gasoline-hybrid	215.88	188.6025	153.2946	141.1123	140.8564	158.8142	147.0003	140.6558	136.0149	151.6511	130.4826	127.8434	131.3182	126.1073	118.8116	118.0292	
Diesel	266.7236	233.0227	185.1448	170.1778	169.7889	178.4687	167.7121	154.5541	141.1978	167.8884	139.8987	136.7035	135.8161	132.2247	127.9448	126.331	
Diesel-hybrid	198.9138	173.7801	141.247	130.0222	129.7864	134.2819	119.5125	114.3543	110.5812	151.6511	110.0431	110.0359	112.1959	111.3961	110.1489	110.5226	
LPG/CNG	314.825	340.8687	277.3016	255.1172	205.5799	231.2216	214.6818	197.8493	185.7357	191.3371	170.167	163.1395	160.8813	153.5097	144.4016	141.0936	
Hydrogen	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Hydrogen-hybrid	0	0	0	ő	0	0	0	0	0	0	0	0	0	0	0	0	
Firstel			0		0					0	0	0		0	0		

- Sales targets

 (defined by user or adoption of IEA scenarios)
- Fuel efficiency of new vehicles (IEA)
- CO2 emissions of new vehicles (calculated)

Buses and Taxis

CO2 factors for:

1. Buses Intercity ; 2. Buses Urban ; 3. Trains ; 4. Aircrafts

B	C D	E	F	G	н		J	K	L	M	N	0	P	Q	R	S
and RAIL	emissior	าร					G	7								
		(
		`	Notes:				0					Y				
			- This she	et estimates	public tran	sport & tax	i fleets CO2	factors bas	ed on IEA do	ata on vehici	e fuel efficie	ency				
		(- Targets	for the fleet o	compositio	n in the stu	dy period ar	e set by the	users							
SUMMARY		``````````````````````````````````````	- Click on	the + signs to	see calcu	lations for ii	ndividual ma	odes				Ĭ				
							0									
		(,				0					0				
Bus intercity																
	Baseline								ScA							
CO2 per vkm	2018	2020	2025	2030	2035	2040	2045	2050	2018	2020	2025	2030	2035	2040	2045	205
all	466.88	442.56	502.20	482.25	457.18	423.30	390.11	358.78	413.50	391.98	406.52	387.24	370.60	354.58	339.19	324.3
Bus urban																
	Baseline								ScA							
CO2 per vkm	2018	2020	2025	2030	2035	2040	2045	2050	2018	2020	2025	2030	2035	2040	2045	205
all	790.72	749.59	785.89	803.90	748.43	681.13	603.85	530.28	700.24	663.81	690.91	660.51	634.39	609.17	584.82	561.3
RAIL																
	Baseline								ScA							
CO2 per vkm	2018	2020	2025	2030	2035	2040	2045	2050	2018	2020	2025	2030	2035	2040	2045	205
Diesel	11303	11185	9747	8494	7401	6449	5620	6203	11303.21	11185.42	9746.99	8493.53	7401.27	6449.48	5620.08	6202.9
Electric	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Air																
	Baseline								ScA							
CO2 per pkm	2018	2020	2025	2030	2035	2040	2045	2050	2018	2020	2025	2030	2035	2040	2045	205
Diesel	124	111.8109	92.61555	83.43592	78.89	73.46577	69.57721	66.17731	123.80	111.81	92.62	83.44	78.89	73.47	69.58	66.1/

Buses detailed – similar for other modes in sheet

														_		
BUS																
0%																
0%	CO2 per vk	m														
		2015	2018	2020	2025	2030	2035	2040	2045	2050	2018	2020	2025	2030	2035	2040
	all	1392.42	1392.42	1383.74	1061.44	859.57	626.74	422.56	242.93	88.93	1392.42	1383.74	896.45	552.70	386.54	240.94
	Gasoline	1309.894	1302.392	1297.39	1123.807	1045.141	974.5937	911.2451	854.2923	846.9454	1302.392	1297.39	1123.807	1045.141	974.5937	911.245
	Gas. Hybri	1047.915	1041.913	1037.912	899.0457	836.1125	779.6749	728.9961	683.4338	677.5563	1041.913	1037.912	899.0457	836.1125	779.6749	728.9961
	Diesel	1392.425	1392.425	1387.078	1201.495	1117.391	1041.967	974.239	913.349	905.4942	1392.425	1387.078	1201.495	1117.391	1041.967	974.239
	D. Hybrid	1113.94	1113.94	1109.663	961.1963	893.9125	833.5734	779.3912	730.6792	724.3954	1113.94	1109.663	961.1963	893.9125	833.5734	779.3912
	CNG/LPG	1375.389	1367.511	1362.26	1179.998	1097.398	1023.323	956.8073	897.0069	889.2926	1367.511	1362.26	1179.998	1097.398	1023.323	956.8073
	Hydrogen	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
	Hyd. Hybrid	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
	Electric	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
	Fuel per 10	0km														
		2015	2018	2020	2025	2030	2035	2040	2045	2050	2018	2020	2025	2030	2035	2040
	all	60.00	60.00	59.63	45.74	37.04	27.01	18.21	10.47	3.83	60.00	59.63	38.63	23.82	16.66	10.3
	Gasoline	56.44347	56.12	55.90469	48.42497	45.03522	41.99534	39.26565	36.81154	36.49496	56.12	55.90469	48.42497	45.03522	41.99534	39.2656
	Gas. Hybrid	45.15478	44.90	44.72375	38.73998	36.02818	33.59628	31.41252	29.44923	29.19597	44.90	44.72375	38.73998	36.02818	33.59628	31.4125
	Diesel	60	60.00	59.76935	51.77256	48.14848	44.89846	41.98006	39.35631	39.01784	60.00	59.76935	51.77256	48.14848	44.89846	41.98000
	D. Hybrid	47.99981	47.99981	47.81548	41.41805	38.51879	35.91877	33.58405	31.48504	31.21427	48.00	47.81548	41.41805	38.51879	35.91877	33.5840
	CNG/LPG	59.26564	58.93	58.69992	50.84622	47.28698	44.09511	41.22893	38.65212	38.31971	58.93	58.69992	50.84622	47.28698	44.09511	41.2289
	Hydrogen	0	0	0	0	0	0	0	0	0	0.00	0	0	0	0	(
	Hyd. Hybrid	0	0	0	0	0	0	0	0	0	0.00	0	0	0	0	(
	Electric	0	0	0	0	0	0	0	0	0	0.00	0	0	0	0	(
	stock share	2015	2018	2020	2025	2030	2035	2040	2045	2050	2018	2020	2025	2030	2035	204
	all	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	1009
	Gasoline	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
	Gas, Hybrid	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	09
	Diesel	100%	100%	99%	54%	10%	8%	5%	3%	0%	100%	99%	59%	20%	15%	109
	D. Hybrid	0%	0%	1%	5,6%	10%	7.50%	5%	3%	0%	0%	1%	0.6%	0%	0.00%	09
	CNG/LPG	0%	0%	0%	30.0%	60%	47.50%	35%	23%	10%	0%	0%	15.0%	30%	22.50%	15%

- 1. CO2 per vkm resulting from below
- 2. Fuel per 100km (IEA)
- 3. Target based fleet (user input)

Developer related sheets

[hidden sheets]

Inputs_aze

This sheet includes data that were created by the ITF to compute the mode choice model.

- It serves as the basis for the variables in the mode choice sheets
- The data come from ITF estimations and were combined with data from Azerbaijan statistics and other sources to estimate the mode choice model parameters
- If you want to change/update this data please get in touch with ITF

Control_2

This sheet works as the sheet where the measures, the scenario built, and the models interface

- The different measures affect this sheet and create multipliers or additions/subtractions that affect parameters in the models
- It primarily affects mode choice sheets but also distribution (directly and indirectly)

Control_2

- These interfaces are included in the OD matrices by mode [the right part of control_2] through long IF statements and links to other sheets.
- Please do not change them directly unless you understand how they work as they might render the model non-functional
- They often link to another sheet, OD_zone_measures

OD_zone_measures

This sheet identifies which OD pairs are affected when a new infrastructure is put in place between two zones.

 For example if a new rail line is done between zones 1 and 3 would affect all zone pairs that would use that line.

Adding a policy measure

- Need to understand the impacts of this new policy (e.g. will it affect travel time, cost, people perception)
- Measures are basically added via IF statements, where the first part has a lot of conditions and safeguards. Then there is the impact in absolute or relative terms
- Whole country measures are easiest to add, zone measures are less easy,
 OD measures are the hardest