

Resilient Transportation Systems: Moving from Risk to Resilience

Presenter: *Dr. Kelsey Stoddard*¹: <u>kelsey.s.stoddard@usace.army.mil</u> POC: *Dr. Igor Linkov*¹: <u>igor.linkov@usace.army.mil</u> *Dr. Andrew Strelzoff*², *Hannah Walter*³, *Sam Dent*²

September 14, 2023 *ERDC EL*¹, *ERDC ITL*², *CTC*³

US Army Corps . of Engineers® This presentation does not necessarily reflect the views of the United States Government, and is only the view of the author

-ROSE

DISCOVER | DEVELOP | DELIVER

About Army Corps Engineer R&D Center

2100 Strong 61% E&S 71% of E&S with Advanced Degrees 29% of E&S with PhD

- **Geo-Materials**
- 3-D Mapping and Characterization
- Cold Regions Science and Engineering
- Civil and Military Engineering
- Computational Prototyping of Military Platforms
- Coastal, River, and Environmental Engineering
- Military Installations and Infrastructure

7 Laboratories

Coastal and Hydraulics Laboratory (CHL) Cold Regions Research and Engineering Laboratory (CRREL) **Construction Engineering Research Laboratory (CERL)** Environmental Laboratory (EL) Geospatial Research Laboratory (GRL Geotechnical and Structures Laboratory (GSL) Information Technology Laboratory (ITL)

Annual Research Program Exceeding \$1.3 Billion

• Blast and Weapons Effects on Structures and

All DoD Services Army, Navy, Air Force, NASA, DHS, FEMA, DIA, NGA Academia 68 EPAs with top engineering schools Industry **172 CRADAs** International 14 international agreements with 7 countries

Traditional Approaches: Risk Assessments & Cost-Benefit Analysis

• Identity risks and manage those risks: Threat, vulnerability, consequence

• Direct - Savings per reduction in shipment loss • Indirect - Fuel and CO₂ savings (from reduction in covered mileage per **Benefits** delivery) Etc. Estimation of reduction in shipments wasted/lost Estimation of reduction in **Cost-Benefit** Estimable Variable/ mileage to be covered per delivery **Stochastic** Analysis Estimation in reduction in customer waiting times • Etc. Intangible **Higher customer** Decision satisfaction (from reduced waiting times)

Schiffmann, O. et al., A Cost–Benefit Analysis Simulation for the Digitalization of Cold Supply Chains. Sensors 2023, 23, 4147. https://doi.org/10.3390/s23084147

Engineer Research and Development Center

Risk vs Resilience: Definitions

Risk -- "a situation involving exposure to danger [threat]."

Security -- "the state of being free from danger or threat."

Resilience -- "the capacity to recover quickly from difficulties."

*Definitions by Oxford Dictionary

VIRONMENTAL

VOL 555 | 1 MARCH 2018 3.0

Don't conflate risk and resilience

'Risk' and 'resilience' are fundamentally different concepts that are often conflated. Yet maintaining the distinction is a policy necessity. Applying a riskbased approach to a problem that requires a resilience-based solution, or vice versa, can lead to investment in systems that do not produce the changes that

Igor Linkov, Benjamin D. Trump

US Army Corps of Engineers, Concord, Massachusetts, USA. Jeffrey Keisler University of Massachusetts Boston, USA. igor.linkov@usace.army.mil

Engineer Research and Development Center

Risk vs Resilience: Definitions

Risk Management Strategy:

- Aim: Predict risks & either:
 - Prevent the from impacting system
 - Planning around them (insurance)
- Threat*Vulnerability*Consequence

Resilience Strategy:

- We can't predict all threats a company will face
 - Especially in a dynamic and changing world
- Reduce severity, time and/or extent of the disruption
- Prepare, absorb, recover, adapt from disruption

Risk vs Resilience: Random Disruptions are Much More Consequential

Risk:

Identity risks and manage those risks

- Only as good as your risk estimates
- Doesn't address system response or un-anticipated disruptions

Resilience:

- Improving system's ability to:
 - Absorb, Recover, Adapt

VIRONMENTAL

- Threat agnostic
 - Addresses both anticipated & unanticipated disruptions

Engineer Research and Development Center

What does it mean to have a resilient transportation network?

Poor Efficiency:

System cannot not accommodate a large volume of commuters driving at the same time.

Traffic congestions are predictable and are typically of moderate level.

US Army Corps of Engineers •

NVIRONMENTAL ABORATORY

Lack of Resilience:

System cannot recover from adverse events (car accidents, natural disasters)

Traffic disruptions are not predictable and of variable scale.

Engineer Research and Development Center **UNCLASSIFIED**

What does it mean to have a resilient transportation network?

SCIENCE ADVANCES | RESEARCH ARTICLE

NETWORK SCIENCE

Resilience and efficiency in transportation networks

Alexander A. Ganin,^{1,2} Maksim Kitsak,³ Dayton Marchese,² Jeffrey M. Keisler,⁴ Thomas Seager,⁵ Igor Linkov²*

Transportation Network Model + Regional Economic Models, Inc.

Contents lists available at ScienceDirect

Transportation Research Part D

journal homepage: www.elsevier.com/locate/trd

Lack of resilience in transportation networks: Economic implications

$$\langle \Delta T \rangle = \frac{1}{N_c} \sum_{\{ij\} \in \text{all roads}} L_{ij} \ell_{ij} \left(\frac{1}{v_{ij}} - \frac{1}{v_{ij}^0} \right)$$

ERDC Approach: System-Level Approach to Resilience

What Makes Complex Systems (Communities) Susceptible to Threat?

After Linkov and Trump, 2019

ERDC Vision for System Resilience

Real World

Affiliation/Acquaintance Group Forming Swarming Synchronization Social **Operations** Center Applications Services Knowledge Management Information Standards Data Storage/Search/Retrieval Routed Networks Protocols Network Topology Communication Telecommunications System The Wireless Web Sensors

Physical

Model

The case for value chain resilience

Igor Linkov, Savina Carluccio, Oliver Pritchard, Áine Ní Bhreasail, Stephanie Galaitsi, Joseph Sarkis and Jeffrey M. Keisler

Operations

Management Alternatives

Management Research Review © Emerald Publishing Limited 2040-8269 DOI 10.1108/MRR-08-2019-0353

ERDC Approach: System-Level Approach to Resilience

System's critical functionality (K)

Network topology: and *links* (*L*)

Network *adaptive algorithms* (C) defining how nodes' (links') properties and parameters change with time

A set of possible damages stakeholders want the network to be resilient against (E)

US Army Corps of Engineers •

$R = f(\mathcal{N}, \mathcal{L}, \mathcal{C}, E)$

After Ganin et al., 2016

Engineer Research and Development Center

ERDC Approach: System-Level Approach to Resilience

ERDC Approach: System-Level Approach to Resilience in Transportation Systems

- Problems that work sought to addressed:
 - General Transportation/Supply Chain **Resilience Quantification***
 - II. Zero-Emission Refueling Station Prioritization

*proposed work

Supply Chain/ Transportation Resilience

Zero Emission Refueling Station

Engineer Research and Development Center

Methodology: Data Fusion and Optimization Using AI and Resilience Modeling

US Army Corps of Engineers •

Engineer Research and Development Center

Methodology: Aggregate GPS

- Tools/Impacts can be understood for:
 - Aggregate Flows
 - Medium vs Heavy Trucks
 - Long Haul
 - CA External Goods:
 - Ports
 - Airports
 - Land Points of Entry

Engineer Research and Development Center

I. Problem 1: **Resilience Policy Comparison Tool**

- Scenario comparison tool compares new road volumes based on changes to roads
 - Does not: Recalculates by assuming cars will divert around the disrupted road
 - Does: Re-calculates by defining completely new routes for impacted vehicles
 - Finds added congestion and travel time
- Aim: Identify single points of failure

UNCLASSIFIED

Engineer Research and Development Center

II. Problem 2: Zero Emission Refueling Station

Challenge:

Minimize the diversion of freight routes caused by fuel conversion (disruption)

Solution: Identify gas stations that could be converted to dispensing stations:

- minimize freight displacement
- scalable

UNCLASSIFIED

Engineer Research and Development Center

II. Problem 2: Methodology **Facility Location Problem**

- Assigns **Demand** to **Facilities** such that an objective is minimized
 - Objective = Total Travel Time \bullet
- Need:
 - **Demand Locations**
 - Facility Locations
 - Travel Time between Demand and Facilities

UNCLASSIFIED

Engineer Research and Development Center

II. Problem 2: Methodology **Facility Location Problem**

- Assigns **Demand** to **Facilities** such that an objective is minimized
 - **Objective = Total Travel Time** \bullet
- Need:
 - **Demand Locations**
 - Facility Locations \bullet
 - Travel Time between Demand and Facilities

UNCLASSIFIED

Engineer Research and Development Center

II. Problem 2: Methodology **Facility Location Problem**

US Army Corps of Engineers •

Engineer Research and Development Center

II. Problem 2: Methodology **Congestion Aware Travel Time**

Distances:

Mean travel time between tracts from Replica freight trips data

Details:

- Trip data was used so that travel distances were 'congestion aware'
- If no trips existed between blocks, travel time was set to 1 day \bullet

22

Engineer Research and Development Center

II. Problem 2: Optimization Results: Candidate Locations

- Identified: **500** Candidate Census block which, together minimize freight diversion
- **Details:**
 - 500 block were identified based on CTC input
 - Gas and Service stations within census blocks were also identified

Engineer Research and Development Center

II. Problem 2: Optimization Results: **Quantifying Location Scalability**

Want: Quantify the Scalability of Locations

Solution: Rank solutions by hubness

Hubness: 1. Re-ran for sets of best (1, 2, ..., 500) stations 2. Count of how many sets contain any location

- High hubness = Scales well as more are added - Probably in a good, central location

Engineer Research and Development Center

II. Problem 2: Optimization Results: Quantifying Location Scalability

Want: Quantify the Scalability of Locations

Solution: Rank solutions by hubness

Hubness: 1. Re-ran for sets of best (1, 2,, 500) stations 2. Count of how many sets contain any location

- High hubness = Scales well as more are added - Probably in a good, central location

Comparison of Implementation Strategy

Engineer Research and Development Center

III. Extensions: Multi-Objective Optimization

- **Examined Concerns:** Define a set of equity concerns which can be weighed against each other
- Solution: Preform Multi-Objective **Optimization:**
 - Gets you a range of answers so decision makers can weight different options

US Army Corps of Engineers •

Where are we? Where do we want to go?

- Where we are at:
 - Growing call for resilience ightarrow
 - Transportation Systems can be modeled \bullet
 - A lot of focus is still on risk, not resilience \bullet
- **Challenges:**
 - Visibility lacksquare
 - Multi-Domain Knowledge \bullet
 - Validation/Success is Hard to Measure \bullet

Engineer Research and Development Center

Where are we? Where do we want to go?

Schiffmann, O. et al., A Cost–Benefit Analysis Simulation for the Digitalization of Cold Supply Chains. Sensors 2023, 23, 4147. https://doi.org/10.3390/s23084147

US Army Corps of Engineers •

VIRONMENTAL

Engineer Research and Development Center

Where are we? Where do we want to go? **Balancing Efficiency and Resilience**

- Want to maximize functionality across time over time
- **Requires estimating both** known and unknown risks

Functionality of Ĕ be Cost

US Army Corps of

Where are we? Where do we want to go?

Summary:

- Resilience should be prioritized more
- Science emerging but needs to be developed
- We approach through data-driven, system-level modeling
- There are still challenges which need to be addressed:
 - Visibility
 - Multi-Domain Knowledge lacksquare
 - Validation/Success is Hard to Measure

Questions

Dr. Kelsey Stoddard kelsey.s.stoddard@usace.army.mil

US Army Corps of Engineers •

31

Engineer Research and Development Center UNCLASSIFIED

IV. Additional Results: Natural Disaster Overlays

- Overlaying freight volumes with climate change vulnerabilities:
 - Wild Fires Early 2045
- Result: Near Stockton
 - N/S fright corridors are close
 - Near-term Fire Risk

Engineer Research and Development Center

UNCLASSIFIED

32