How to use historic accident data for a reliable assessment of traffic safety measurements

Lisa Sulzberger, Daniel Schmidt, Joerg Moennich, Thomas Schlender & Thomas Lich Bosch Accident Research

7th IRTAD Conference: BETTER ROAD SAFETY DATA FOR BETTER SAFETY OUTCOMES, Lyon, 27-28 September 2022

Motivation: Vehicle safety improved significantly in past decades

► Example: Frontal tree impact (delta-v ~40 km/h)

Vehicle registration year **2018**

Equipped with ESP®

slight injured occupant (MAIS1)

Mid-term measures leading to changed accident situations

Direct effects

- Environmental conditions
- Traffic conditions
- Vehicle characteristics (active and passive safety)
- Infrastructure
- Traffic participants' behavior
- •

Indirect effects

- Season
- Vehicle stock
- Vehicle technology
- User behavior
- Economic situation
- Demographic situation
- Political framework

•

Source: Dissertation Nora Reiter: Prognose des deutsch Verkehrsunfallgeschehens unter Berücksichtigung der Fahrzeugsicherheitssysteme, Oktober 2015

© Robert Bosch GmbH 2022. Alle Rechte vorbehalten, auch bzgl. jeder Verfügung, Verwertung, Reproduktion, Bearbeitung, Weitergabe sowie für den Fall von Schutzrechtsanmeldungen

Mid-term measures leading to changed accident situations

Direct effects

- Environmental conditions
- Traffic conditions
- Vehicle characteristics (active and passive safety)
- Infrastructure
- Traffic participants' behavior

Indirect effects

- Season
- Vehicle stock
- Vehicle technology
- User behavior
- Economic situation
- Demographic situation
- Political framework

. . .

Source: Dissertation Nora Reiter: Prognose des deutsc Verkehrsunfallgeschehens unter Berücksichtigung der Fahrzeugsicherheitssysteme, Oktober 2015

Improved vehicle safety results in changed accident characteristics

Vehicle age is relevant measure for vehicle safety

Vehicle age distribution of registered cars

Older cars are less common in vehicle fleet

Expected overrepresentation of old vehicles in historic accident data

Post-stratifying historic accident data with vehicle age

- Calculate correction factor cf_a for each accident
- cf_a depends on combination of participants (vehicle1|vehicle2|...) and respective ages

$$cf_a = \frac{P_a}{p_a}$$
, with

- a ... age of car relative to analysis year
- p_a ... share of accidents with cars of age a rel. to analysis year
- *P_a* ... share of cars in national data in analysis year

Share of cars dependent on their age in historic data adapted to current national data

Example: ESP® equipment of cars in GIDAS

Applying post-stratification to correct time changing characteristics

Example: ESP® equipment of cars in GIDAS

Share of cars with ESP in the complete dataset corresponds to that in current data

© Robert Bosch GmbH 2022. Alle Rechte vorbehalten, auch bzgl. jeder Verfügung, Verwertung, Reproduktion, Bearbeitung, Weitergabe sowie für den Fall von Schutzrechtsanmeldungen

How to use historic accident data for a reliable assessment of traffic safety measurements

Summary

- Vehicle age reflects vehicle safety status
- Post-stratifying historic accident data to the age distribution in the current vehicle fleet
- → Mapping of historic accidents onto current accident statistics
- → Applicability of full dataset

Next step

Extrapolation to Germany

THANK YOU FOR YOUR ATTENTION

Contact:

Lisa Sulzberger: <u>lisa.sulzberger@de.bosch.com</u>

