

Innovation and technology in multi-modal supply chains

Lóri Tavasszy

16-4-2018

Contents

Innovations

- Mass-individualized logistics services
- Network integration and synchronisation
- Transport technology
- Digitalisation in logistics planning and operations
- Implications for multimodal supply chains
 - Multimodality provides opportunities for network integration
 - Also, significant effect on overall network resilience
 - However, preconditions of ICT systems and transport technology to be met
- Balancing efficiency and resilience some thoughts

Context: global growth & diversity of trade

The new world order

Manufacturing, 2005 prices, % of world output

— US — China — Japan — Germany

- Britain

- India

The world's population

Regional % change, 2013-2050 forecast

Mass-individualisation & global chains

Mass-individualization is enabled by collaboration

Tavasszy et al., 2012

Hybrid supply networks

Hybrid supply networks (2)

Bron: TNO / SeaconAZ project

Collaboration is enabled by decreasing transaction costs

Effect of ICT on logistics costs

- Number of links = n²-n
- Optimal number of partners depends on balance of economies of scale and transaction costs
- ICT reduces transaction costs

Open Supply Web (π)

Source: Ballot E., O. Guodet & B. Montreuil (2011), Physical Internet enabled open hub network design for distributed networked operations, Proc. of SOHOMA 2011

80

Efficiency increase potential

Are we at peak efficiency in road transport?

- When measured in weight: no (43%)
- In m² or m³: very close...

• *Consolidation opportunities across modes of transport will be important*

Source: Davydenko et al., 2015

Transport technology innovations

Transport technology: directions

Autonomy

- Trucks and platoons
- Rail AGV
- Waterborne
- Drones
- Warehousing

Integration

- Flexible chassis systems
- Terminal technology
- Foldable containers
- Modularization

Propulsion

- Electrification
- Space travel
- Maglev
- Sail ships

Strong reduction of transport costs promised Many legal barriers Interfacing with non-automated systems?

Interfacing with non-automated systems? How to manage mixed regimes? Can we exploit digitalization for resilience?

Reducing asset intensity of systems Critical for functioning of intermodal systems

Transshipment still a major cost burden
Low feasibility under regular conditions
Disruption risk not part of business models

Major changes imminent but uncertain Energy transition is leading change Transition in transport system is vulnerable Niche vs. mass solutions

Integration: from multimodal to intermodal

Intermodal networks & robustness

Robustness is a measure of a system's ability to keep a certain functionality despite changes in the behaviour of its components or its environment . Here: measured in number of challenges before disconnected (Van Dam, 2017)

Result: hubs are key for network robustness

How to advance TEN-T from corridors to a real network?

ALICE roadmap for hubs, corridors & synchromodality

Supply networks

• New demands of shippers

• EU as Hinterland of global chains

Transport services network

• Seamless exchange between modes

• ICT driven planning, booking, operations

Infrastructure network

- Hubs' role in EU network
- Role of technology in integration

Benefits of synchromodality

Synchromodality allows differentiation of services to customer classes, by using degrees of freedom in the (combined) deployment of transport modes. This carries opportunities for cost reduction and revenue increase.

Physical vs information flows

(after: MSc thesis Anton Delawari, TUD)

Promise of digitalization

...how do these find application in multimodal transport?

Transport modes-in-the-loop

Forwarders' dis-intermediation headache

Social value of innovation

(bn USD, by 2025)	new business value	logistics cost reduction	emission and congestion	
Data analytics	600			
Control Towers	210			
Trade Facilitation	170	600	-55	
Crowdsourcing	310	800	180	
Autonomous Transport		50		
Shared Warehousing		500	70	
Total	1290	1950	195	(WEF

- Focus of impact: collaboration & control
- External cost reduction is limited
- Distributive effects?

- PS Impact evaluation disclaimer
- Definition of innovations is often partial or ambiguous
- Propagation of innovations is unknown/uncertain Impact combined with redesign of business processes Innovations often deployed together in one big bang

2016)

Innovation impacts on resilience

- Critical links: higher utilization results in less slack in the system (higher failure probability) and higher scale (stronger failure impact).
- There are many links that could mitigate this risk, but balance is unclear

Conclusions

- Main service innovation: mass-individualised logistics services
- Supporting innovations involve
 - Network integration and synchronisation
 - Transport technologies
 - ICT applications
- Network integration:
 - Potential mostly across modes
 - Multimodal → intermodal → synchromodal
- Transport technologies
 - Integration challenge to achieve efficiency impact
 - Automation & propulsion may affect resilience
- ICT
 - Reduces interaction costs and allows operational control
 - Accelerator for above innovations
- Overall: many claims for impacts of innovation, but no evidence for eventual balance of efficiency vs. resilience improvement

