

H

ITF ACCESSIBILITY ASSESSMENT FRAMEWORK

Leveraging Data for Accessibility and Equity Assessment: Case Studies from Ghana and South Korea

> 8th ITF Statistics Meeting 19 September 2022, Paris

Yaroslav Kholodov

International Transport Forum ITF accessibility framework

Bottom-up VS Top-down

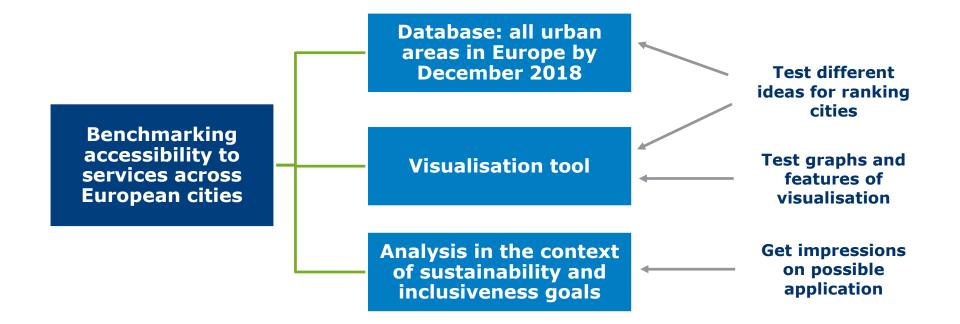
- **Bottom-up:** case by case high detail but harder to expand to a large number of cities
- **Top-down:** directly on a larger number of cities more limited on detail but better suited for global frameworks

Developing a global framework is particularly relevant with "affordable and equitable access for all" as SDG and NUA goals.

ITF developed a **top-down approach** for global <u>benchmarking of</u> accessibility in cities published in 2019.

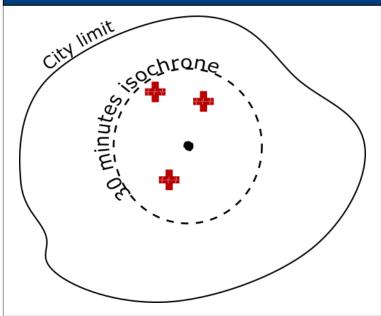
International Transport Forum Advantages of the framework

Is conceptually simple


Is comparable at a global level

Focuses on access to opportunities

Multimodal


First application

Methodological choices

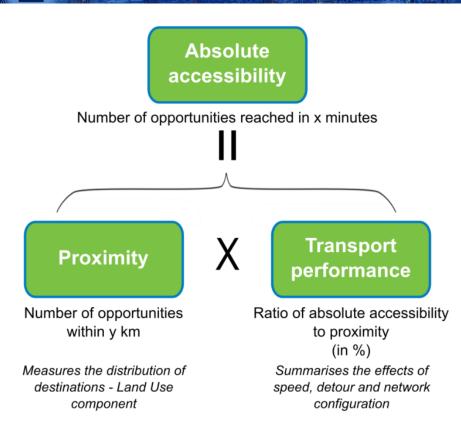
Contour based metrics

Large coverage

European cities > 0.5 million inhabitants 4 modes of transport

Comparable approaches

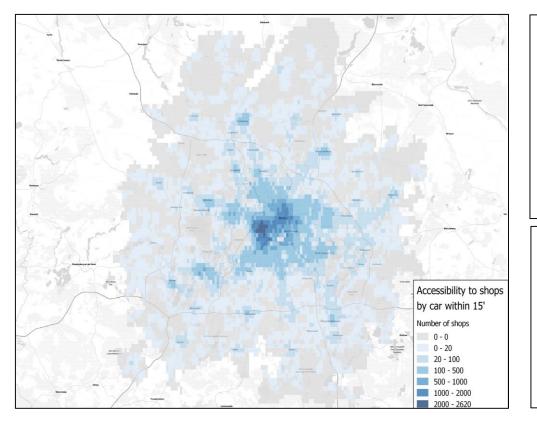
Same methodology Comparable perimeters (FUA) No behavioural parameters


Global databases and formats

Example: OpenStreetMap

Methodological choices

101


Spatial inputs

- **Functional urban area (FUA) or Metropolitan Area**: These terms refer to the entire urban continuum that includes the city and the commuting zone, as per the EU-OECD definition.
- **City**: One or more local administrative unit that have the majority of their population in an urban centre, which is a cluster of contiguous cells each with a density of at least 1,500 inhabitants and a total population of 50,000.
- **Commuting zone**: The local administrative units surrounding a city that have at least 15% of their employed residents commuting to the city.

Destination	Further description	Purpose	Main source
Other people		Proxy for opportunities	INSPIRE population grid -JRC
Schools	All pre-university education, primary and secondary	Education, daily trips	TomTom
Hospitals		Health care, emergencies	TomTom
Food shops	Super market, groceries, bakeries, butchers, specialty stores, etc.	Daily needs, economic activity	TomTom
Restaurants	All type of restaurants	Social interactions, economic activity	TomTom
Recreation	Theatres, museums, cinemas, stadiums, tourist and cultural attractions	Social interactions, hobbies, culture	TomTom
Green spaces	All green urban areas (parks) and forests.	Active lifestyle, quality of life	Copernicus Urban Atlas 2012 land cover/land use database

International Transport Forum How do we compute it?

The contour-based indicator is computed

- 500m X 500m grid of each city
- For each service
- For each mode

Aggregated at the city level using an average

One value per service and mode for each city

International Transport Forum How do we compute it?

Assumptions and data to compute travel times by car

- 1. From actual speed observation (INRIX)
- 2. Peak-hour congestion factors for the city core and highways
- 3. Access and parking time depend on the population density

Assumptions and data to compute travel times by PT

- 1. Based on the schedule produced by a local authority or a PT operator
- 2. Door-to-door (access, waiting and transfer times, eqress)
- 3. Transfer connections are inferred with a maximum transfer distance

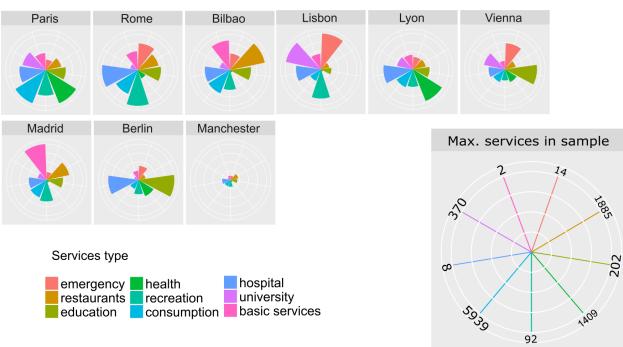
International Transport Forum What can it be used for?

Comparing cities

Two different perspectives:

- how many services can one access (in absolute value or %) in a given amount of time
- how many people can access a minimum basket of services / how much time it takes to access a minimum basket of services

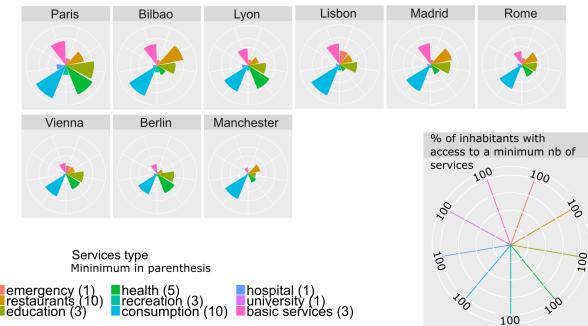
More detailed analysis of a limited number of cities


- In a city, are income and accessibility correlated? Does this vary between cities?
- Compare mode performances in providing access

International Transport Forum Examples of comparison

101

How many services can an inhabitant access in 30 minutes by public transport?



International Transport Forum Examples of comparison

NOD

What % of the inhabitants can access X services within walking distance?

Visualisation Tool

Transport Forum

green spaces and population.

About ITF Our work News Summit ECMT Platform Events 🛛 🜌

10B

What does this tool measure?

How does the visualisation tool work?

-

How accessible is your city?

Use this tool to choose from 121 cities to compare how easily citizens can reach schools, hospitals, shops,

Check our Visualisation Tool

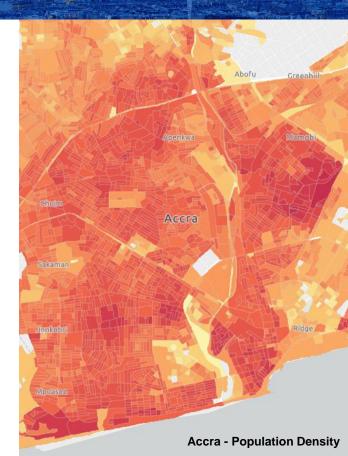
https://www.itf-oecd.org/urbanaccess-framework

Budapest Wien Brussels Paris Set your criteria Weight importance of destinations 100% 200% 100% 200% 100% 200% 100% 200% -1 Berlin Bologna Firenze Antwerpen 100% 200% 0 **Pick your indicator** Access Proximity Performance

Case study: Ghana

Background

- Collaboration with OECD's Sahel and West Africa Club (SWAC)
- Expanding ITF Accessibility Framework to the two biggest cities in Ghana:
 - Accra (5.5M, 1208 km²)
 - Kumasi (2.1M, 665 km²)
- Access to facilities by private transport, active modes, informal PT (tro-tro) and taxi, split by gender



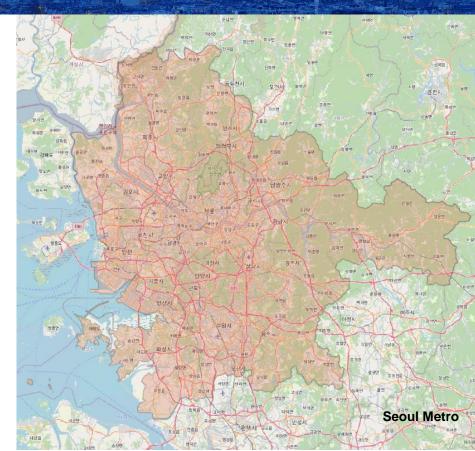
Case study: Ghana

Approach

- Challenges: different datasets than EU cities
 - FUAs \rightarrow Africapolis "urban extents"
 - Population \rightarrow GRID3 data from satellite imagery
 - Tro-tro network \rightarrow GTFS mapped by DT4A
 - Roads + POIs \rightarrow Private data aggregator
- Engaged local experts to validate travel behavior assumptions (e.g. parking time)
- Conducting a survey to describe gender differences in transport access in Ghana

International Transport Forum Case study: Ghana

Expected Outcomes


- Create a **flexible** accessibility model that can be applied to a range of national contexts and **datasets**
- Visualize spatial patterns in the gender-specific accessibility of facilities across two major cities in Ghana
- Identify opportunities to improve accessibility through land use and infrastructure interventions

Case study: South Korea

Background

- Collaboration with the South Korea Ministry of Land, Infrastructure and Transport (MOLIT) and Korea Transport Institute (KOTI)
- Expanding ITF Framework to the Seoul Capital Area (26M, 12600 km2)
- Access to services by private transport, walking, cycling and PT for different socio-economic groups

Case study: South Korea

Approach

International Transport Forum

- Advantages: complete, disaggregate and empirical datasets
 - FUA \rightarrow original OECD-estimated boundaries
 - Population \rightarrow detailed split by age and gender
 - PT network → GTFS with real performance travel times and frequencies
 - Roads \rightarrow Average speed on each link per hour
- Challenges with the network for active modes and data standards (locally produced, requires further processing and harmonisation)

Expected Outcomes

- Expand the current accessibility framework in Korea by adding new modes, destination types and demographic split
- Insights on the current state of accessibility for different socio-economic groups in the Seoul Capital Area through an equity lens
- Draw up **policy directions** for more equitable and accessible transport systems

What does it mean for the Stats Community?

101

- Data is essential to generate policy insights for the transport sector
- More and better urban mobility data needs to be collected:
 - Disaggregate population data (gender, mode availability and choice, trip chaining)
 - Empirical datasets for private and public transport
 - Availability and quality of infrastructure for pedestrians and cyclists
 - Data on new forms of urban mobility

• **Standardised data** underpins the harmonised benchmarking framework:

- Uniform data and consistent methodologies
- International standards for homogenised data sources

Thanktyou

Yaroslav Kholodov Policy Analyst | Modeller Data and Policy Analytics Team yaroslav kholodov@itf-oecd.org

